The rheological anomaly in water-silicate systems: a possible thermodynamic explanation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.105837

Keywords:

soluble silicates, silicates of amines, aqueous solutions, anomalous rheology, thermogelation, polycondensation

Abstract

A rheological anomaly, consisting in the reversible increase in solution viscosity with increasing temperature, is a typical property of aqueous solutions of aminosilicates (polysilicates of aliphatic amines, amino alcohols and other amino compounds). To explain this anomaly, a simple mathematical model of interrelated acid-base and polycondesation equilibria in such solutions is proposed. The proposed calculation model assumes a direct dependence of the solution viscosity on the polymerization degree of silicate anions, as well as the independence of the dissociation constant of silanols and the polycondensation equilibrium constant on the degree of anions polymerization.

Based on the assumptions made, a system of eight linear and nonlinear equations was constructed and solved. The results of calculations performed for concentrated solutions of aminosilicates (methylamine and piperidine silicates), as well as sodium and tetramethylammonium silicates, confirm the presence of a positive temperature dependence of the polymerization degree of silicate anions in the aminosilicate solutions, in contrast to the solutions of silicates of the strong bases. Thus, the proposed mathematical model of polymerization-hydrolysis equilibria in aqueous silicate solutions qualitatively explains the existence of the rheological anomaly in aqueous solutions of aminosilicates and its absence in solutions of alkali silicates and silicates of quaternary ammonium bases. In addition, this model correctly reproduces the displacements of the molecular mass distribution of silicate anions with changes in chemical composition and concentration of solutions.

The proposed approach makes it possible to clarify the mechanism of the rheological anomaly, to understand the roles of various thermodynamic factors in its occurrence, and, as a consequence, to conduct a more meaningful search for new silicate and non-silicate systems with the same anomaly.

Author Biographies

Nikolai Maliavski, National Research University Moscow State University of Civil Engineering Yaroslavskoye highway, 26, Moscow, Russia, 129337

PhD, Associate Professor

Department of general chemistry

Olga Zhuravlova, Corporation «SIIG» Volodimira Monomaha str., 25-a/2, Dnipro, Ukraine, 49000

PhD, Deputy Director

Olga Denysiuk, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Assistant

Department of information systems

References

  1. Maliavski, N., Tchekounova, E., Dushkin, O. (1994). Silica fibers obtained from aminosilicate solutions with a reversible spinnability. Journal of Sol-Gel Science and Technology, 2 (1-3), 503–505. doi: 10.1007/bf00486298
  2. Malyavskiy, N. I., Velikanova, N. V. (2010). Reologicheskaya anomaliya v rastvorah aminosilikatov: mekhanizm i prakticheskie primeneniya. Vestnik MGSU, 4 (3), 111–116.
  3. Malyavskiy, N. I., Dushkin, O. V. (2011). Nekotorye zakonomernosti sushchestvovaniya reologicheskoy anomalii v vodnyh rastvorakh silikatov. Vestnik MGSU, 4, 163–168.
  4. Iler, R. K. (1979). The Chemistry of Silica. New York: Wiley, 886.
  5. Toutorski, I. A., Tkachenko, T. E., Maliavski, N. I. (1998). Structural and chemical modification of polydiene latexes by gel derived silica. Journal of Sol-Gel Science and Technology, 13 (1/3), 1057–1060. doi: 10.1023/a:1008628919412
  6. Joshi, S. C. (2011). Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials, 4 (12), 1861–1905. doi: 10.3390/ma4101861
  7. Tomsic, M., Prossnigg, F., Glatter, O. (2008). A thermoreversible double gel: Characterization of a methylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology. Journal of Colloid and Interface Science, 322 (1), 41–50. doi: 10.1016/j.jcis.2008.03.013
  8. Bodvik, R., Dedinaite, A., Karlson, L., Bergstrom, M., Baverback, P., Pedersen, J. S. et. al. (2010). Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354 (1-3), 162–171. doi: 10.1016/j.colsurfa.2009.09.040
  9. Schmolka, I. R. (1994). Physical Basis for Poloxamer Interactions. Annals of the New York Academy of Sciences, 720 (1), 92–97. doi: 10.1111/j.1749-6632.1994.tb30437.x
  10. Yu, S., Zhang, X., Tan, G., Tian, L., Liu, D., Liu, Y. et. al. (2017). A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydrate Polymers, 155, 208–217. doi: 10.1016/j.carbpol.2016.08.073
  11. Malyavskiy, N. I., Pokid'ko, B. V. (2013). Polikondensatsionnye ravnovesiya i reologicheskaya anomaliya v vodnyh rastvorah silikatov. Internet-vestnik VolgGASU. Ser.: Politematicheskaya, 4 (29). Available at: http://vestnik.vgasu.ru/attachments/MalyavskiyPokidko-2013_4(29).pdf
  12. Hareesh, U. N. S., Anantharaju, R., Biswas, P., Rajeswari, K., Johnson, R. (2010). Colloidal Shaping of Alumina Ceramics by Thermally Induced Gelation of Methylcellulose. Journal of the American Ceramic Society, 94 (3), 749–753. doi: 10.1111/j.1551-2916.2010.04188.x
  13. Biswas, P., Swathi, M., Ramavath, P., Rajeswari, K., Buchi Suresh, M., Johnson, R. (2012). Diametral deformation behavior and machinability of methyl cellulose thermal gel cast processed alumina ceramics. Ceramics International, 38 (8), 6115–6121. doi: 10.1016/j.ceramint.2012.04.059
  14. Knarr, M., Bayer, R. (2014). The shear dependence of the methylcellulose gelation phenomena in aqueous solution and in ceramic paste. Carbohydrate Polymers, 111, 80–88. doi: 10.1016/j.carbpol.2014.04.078
  15. Boffito, M., Sirianni, P., Di Rienzo, A. M., Chiono, V. (2014). Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. Journal of Biomedical Materials Research Part A, 103 (3), 1276–1290. doi: 10.1002/jbm.a.35253
  16. Yang, X., Zhu, W., Yang, Q. (2007). The Viscosity Properties of Sodium Silicate Solutions. Journal of Solution Chemistry, 37 (1), 73–83. doi: 10.1007/s10953-007-9214-6
  17. Yang, X., Zhang, S. (2016). Characterizing and Modeling the Rheological Performances of Potassium Silicate Solutions. Journal of Solution Chemistry, 45 (12), 1890–1901. doi: 10.1007/s10953-016-0540-4
  18. Svensson, I. L., Sjoberg, S., Ohman, L.-O. (1986). Polysilicate equilibria in concentrated sodium silicate solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82 (12), 3635. doi: 10.1039/f19868203635
  19. Provis, J. L., Duxson, P., Lukey, G. C., Separovic, F., Kriven, W. M., van Deventer, J. S. J. (2005). Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions. Industrial & Engineering Chemistry Research, 44 (23), 8899–8908. doi: 10.1021/ie050700i
  20. Zhang, X.-Q., van Santen, R. A., Jansen, A. P. J. (2012). Kinetic Monte Carlo modeling of silicate oligomerization and early gelation. Physical Chemistry Chemical Physics, 14 (34), 11969. doi: 10.1039/c2cp41194f
  21. Falcone Jr., J. S., Bass, J. L., Krumrine, P. H., Brensinger, K., Schenk, E. R. (2010). Characterizing the Infrared Bands of Aqueous Soluble Silicates. The Journal of Physical Chemistry A, 114 (7), 2438–2446. doi: 10.1021/jp908113s
  22. Malyavskiy, N. I., Pokidko, B. V., Velikanova, N. V. (2004). Molekulyarno-massovoe raspredelenie silikatnyh ionov v rastvorah aminosilikatov. Fundamentalnye nauki v sovremennom stroitelstve. Moscow: Izdatelstvo MGSU, 67–72.
  23. Leffler, J. E., Grunwald, E. (1963). Rates and equilibria of organic reactions. New York: Wiley, 458.
  24. Sidorov, V. I., Hripunkov, A. N., Malyavskiy, N. I. (1989). Poluchenie i issledovanie vodnyh rastvorov silikatov nekotoryh alifaticheskih aminov. Zhurnal prikladnoy himyi, 4, 901–904.

Downloads

Published

2017-08-22

How to Cite

Maliavski, N., Zhuravlova, O., & Denysiuk, O. (2017). The rheological anomaly in water-silicate systems: a possible thermodynamic explanation. Eastern-European Journal of Enterprise Technologies, 4(6 (88), 23–28. https://doi.org/10.15587/1729-4061.2017.105837

Issue

Section

Technology organic and inorganic substances