Modeling of daily temperature mode in premises using a predictive controller

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108574

Keywords:

simulation of thermal field of premises, predictive controller, pulse-width modulation (PWM), PWM control, heat supply to office building

Abstract

The goal of present work is to decrease electric power consumption in a building employing the developed control method that uses a prediction filter. To accomplish this goal, a model of the premises was constructed in the ANSYS Fluent software and a PWM predictive controller was synthesized. Modeling of daily state of the premises with maintenance of assigned temperature using the predictive controller, a two-position controller and a PID-control was performed. Results of modeling demonstrate that the use of predicting controller, taking into account parameters of the building, heating and ventilation systems, outdoor air temperature with maintaining minimal permissible operating air temperature in the premises at night, at weekends and on holidays, makes it possible to save heat resources. Refusal from continuous control and transition to the PWM predictive controller demonstrated a decrease in operating time of heating equipment by 2.3 times from 24 to 10.5 hours. The proposed control method showed the best controlling accuracy equal to 5 %, compared to a two-position control with hysteresis and a PID-control.

Author Biographies

Petro Kachanov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Science, Professor

Department of automation and control systems

Oleg Yevseienko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of automation and control systems

References

  1. Mirovyie tendentsyi povyisheniya energoeffektivnosti zdaniy (2012). Energosberezhenie, 5, 38–42.
  2. Seppanen, O. (2013). Povyishenie energoeffektivnosti. Zakonodatelstvo ES. Zdaniya vyisokih tehnologiy. Available at: http://zvt.abok.ru/articles/80/Povishenie_energoeffektivnosti_Zakonodatelstvo_ES
  3. Direktiva Evropeyskogo parlamenta i Soveta 2010/31/EC ot 19 maya 2010 goda ob energosberezheniy zdaniy (2010). Оfitsialniy vestnik Evropeyskogo Soyuza. Available at: http://esco.agency/ru/library/directive_2010_31_EC_rus.pdf
  4. Energetichna strategiya Ukrayini na period do 2035 roku. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244979237
  5. Savytskyi, S. M., Hapon, A. I., Kachanov, P. O., Yevseienko, O. M., Vyskrebentsev, V. O. (2013). Pat. No. 81276 UA. Sposib prohramnoho upravlinnia teplovym obiektom z zastosuvanniam shyrotno-impulsnoi moduliatsyi. MPK G05D 23/19 (2006.01). No. u201300059; declareted: 02.01.2013; published: 25.06.2013, Bul. No. 12, 4.
  6. Rotov, P. V. (2011). Sposobyi regulirovaniya teplovoy nagruzki sistem teplosnabzheniya. Perspektivyi razvitiya. ESKO, 10. Available at: http://www.journal.esco.co.ua/2011_10/art069.htm
  7. Degtyar, A. B., Panferov, V. I. (2008). Postroenie algoritma impulsnogo otopleniya zdaniy i issledovanie rezhimov ego raboty. Vestnik YuUrGU. Seriya: Kompyuternyie tehnologiy, upravlenie, radioelektronika, 8 (17 (117)), 41–44.
  8. Lee, K.-H., Joo, M.-C., Baek, N.-C. (2015). Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods. Energies, 8 (9), 9344–9364. doi: 10.3390/en8099344
  9. Cellucci, G. (2009). Optimize HVAC Controls And Energy Management Systems. Building Automation, 28–29.
  10. Hart, R. (2012). Advanced unitary HVAC control sequence. ASHRAE Trans, 118 (1), 628–635.
  11. Afram, A., Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343–355. doi: 10.1016/j.buildenv.2013.11.016
  12. Jin, G.-Y., Tan, P.-Y., Ding, X.-D., Koh, T.-M. (2011). Cooling Coil Unit dynamic control of in HVAC system. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi: 10.1109/iciea.2011.5975722
  13. Moradi, H., Saffar-Avval, M., Bakhtiari-Nejad, F. (2011). Nonlinear multivariable control and performance analysis of an air-handling unit. Energy and Buildings, 43 (4), 805–813. doi: 10.1016/j.enbuild.2010.11.022
  14. Anderson, M., Buehner, M., Young, P., Hittle, D., Anderson, C., Jilin Tu, Hodgson, D. (2008). MIMO Robust Control for HVAC Systems. IEEE Transactions on Control Systems Technology, 16 (3), 475–483. doi: 10.1109/tcst.2007.903392
  15. Henze, G. P., Felsmann, C., Knabe, G. (2004). Evaluation of optimal control for active and passive building thermal storage. International Journal of Thermal Sciences, 43 (2), 173–183. doi: 10.1016/j.ijthermalsci.2003.06.001
  16. Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Engineering Practice, 19 (7), 700–710. doi: 10.1016/j.conengprac.2011.03.005
  17. Homod, R. Z., Sahari, K. S. M., Almurib, H. A. F., Nagi, F. H. (2012). Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index. Energy and Buildings, 49, 254–267. doi: 10.1016/j.enbuild.2012.02.013
  18. Navale, R. L., Nelson, R. M. (2010). Use of evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil. Energy and Buildings, 42 (11), 2213–2218. doi: 10.1016/j.enbuild.2010.07.017
  19. Attia, A.-H., Rezeka, S. F., Saleh, A. M. (2015). Fuzzy logic control of air-conditioning system in residential buildings. Alexandria Engineering Journal, 54 (3), 395–403. doi: 10.1016/j.aej.2015.03.023
  20. Krukovskiy, P. G., Yurchenko, D. D., Parkhomenko, G. A., Tadlya, O. Yu., Polubinskiy, A. S. (2009). CFD-modelirovanie teplovogo rezhima pomeshcheniya s razlichnymi sistemami otopleniya. Ch. 1. Razrabotka trekhmernykh CFD-modeley v sopryazhennoy postanovke. Promyshlennaya Teplotekhnika, 5, 56–61.
  21. Yevseienko, O. N., Savitskiy, S. M., Salnikov, D. V. (2014). Poluchenie iskhodnykh dannykh dlya provedeniya eksperimenta po upravleniyu temperaturoy obekta s pomoshchyu ShIM-modulyatsiy i predskazyvayushchego filtra. Fіziko-tekhnologіchnі problemi radіotekhnіchnikh pristroiv, zasobіv telekomunіkatsіy, nano- ta mіkroelektronіki. Сhernivtsi, 165–166.
  22. Yevseenko, O. N., Kachanov, P. A. (2014). Podderzhanie zadannoy temperatury inertsionnogo obekta s ispolzovaniem ShIM-regulirovaniya s predskazaniem. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Avtomatyka ta pryladobuduvannia, 67, 18–28.

Downloads

Published

2017-08-24

How to Cite

Kachanov, P., & Yevseienko, O. (2017). Modeling of daily temperature mode in premises using a predictive controller. Eastern-European Journal of Enterprise Technologies, 4(2 (88), 33–41. https://doi.org/10.15587/1729-4061.2017.108574