Determining performance efficiency of the differential in a device for speed change through epicycle

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110683

Keywords:

performance efficiency, toothed differential, change in speed, satellite, epicycle

Abstract

We determined coefficient of performance efficiency for the multistage toothed differentials in a device for speed change when the drive link is a sun cogwheel of the first stage, the driven link is a carrier, or vice versa, with the epicycles of separate stages as control links.

Analytical dependences for determining performance efficiency of the multistage toothed differentials were derived using a method of potential power, which is the product of circular force on teeth and circular velocity of the point of initial circle of the satellite relative to the carrier, or the product of torque of a given force by angular velocity. Given the complexity of the task, we performed here a theoretical-computer study into performance efficiency of multistage toothed differentials in the devices for speed change with hydraulic systems using two- and three-stage transmissions as examples. By using a given procedure, it is possible to determine performance efficiency of the four- and multistage transmissions.

We constructed graphical dependences for performance efficiency of two- and three-stage transmissions. These charts enable visual tracking of change in the value of performance efficiency depending on angular velocity of the epicycle, transfer ratio, and the number of stages.

It was established that for the two- and three-stage toothed differentials the condition of automatic braking is not applicable because performance efficiency is far greater than zero. In all cases, an increase in the number of stages in toothed differential results in the decrease of performance efficiency, which confirms general patterns.

The results obtained might have practical application at the stage of development and design of new devices for speed control, they make it possible to estimate operation of multi-stage toothed differentials in terms of energy consumption and automatic braking, thereby creating a basis for further research

Author Biographies

Volodymyr Mаlashchenkо, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Departament

Departament of Technical Mechanics and Machine Dynamics

Оleh Strilets, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

PhD

Department of Analytical Dynamics, Engineering Graphics and Mechanical Engineering

Volodymyr Strilets, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

PhD, Associate Professor

Departament of Analytical Dynamics, Engineering Graphics and Mechanical Engineering

References

  1. Sklyarov, V. N., Volkov, V. P., Sklyarov, N. V., Rudenko, I. D., Sergienko, N. E. (2013). Avtomobil'. Osobennosti konstruktsii. Kharkiv, 520.
  2. Khmara, L. A., Kravets, S. V., Skobliuk, M. P. et. al.; Khmara, L. A., Kravets, S. V. (Eds.) (2014). Mashyny dlia zemlianykh robit. Dnipropetrovsk; Rivne; Kharkiv: KhNADU, 546.
  3. Bochkov, V. M., Silin, R. I., Havrylchenko, O. V.; Silin, R. I. (Ed.) (2009). Metalorizalni verstaty. Lviv: Vydavnytstvo Lvivskoi politekhniky, 268.
  4. D'yakov, I. F., Kuznetsov, V. A., Tarhanov, V. I. (2003). Stupenchatye i planetarnye korobki peredach mekhanicheskih transmissiy. Ul'yanovsk: UlGTU, 120.
  5. Sharipov, V. M., Krumbol'dt, L. N., Marinkin, A. P. (2000). Planetarnye korobki peredach kolesnyh i gusenichnyh mashin. Moscow: MGTU "MAMI", 142.
  6. Narbut, A. N. (2013). Gidrodinamicheskie peredachi. Moscow: KNORUS, 176.
  7. Haritonov, S. A. (2003). Avtomaticheskie korobki peredach. Moscow: Astrel' AST, 280.
  8. Kudenko, M. M., Strilets, V. M. (2001). Pat. No. 44135 UA. Vantazhoupornyi zupynnyk [Load-support stop gear]. MPK V66D5/32. No. 2001053400; declareted: 21.05.2001; published: 15.03.2005, Bul. No. 3.
  9. Kudenko, N. M., Strelets, V. N. (2001). Pat. No. 2211796 RU. Ostanovka dlya gruza, peremeshchaemogo mekhanizmom pod'ema [Stop gear for a load moved by a lifting mechanism]. MPK V66D5/00. No. 2001107699/28; declareted: 21.03.2001; published: 10.09.2003, Bul. No. 25.
  10. Kinytskyi, Ya. T. (2002). Teoriya mekhanizmiv i mashyn. Kyiv: Naukova Dumka, 660.
  11. Uicker, J. J., Pennock, G. R., Shigley, J. E. (2003). Theory of Machines and Mechanisms. Oxford University Press, New York, USA.
  12. Hohn, B.-R., Stahl, K., Gwinner, P. (2013). Light-Weight Design for Planetary Gear Transmissions. Geartechnology, 96–103.
  13. Malashchenko, V. O., Strilets, O. R., Strilets, V. M. (2015). Klasyfikatsiya sposobiv i prystroiv keruvannia protsesom zminy shvydkosti v tekhnitsi. Pidiomno-transportna tekhnika, 1, 70–78.
  14. Pawar, P. V. (2015). Design of two stage planetary gear train for high reduction ratio. International Journal of Research in Engineering and Technology, 04 (06), 150–157. doi: 10.15623/ijret.2015.0406025
  15. Bahk, C.-J., Parker, R. G. (2013). Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory, 70, 298–319. doi: 10.1016/j.mechmachtheory.2013.07.018
  16. Huang, Q., Wang, Y., Huo, Z., Xie, Y. (2013). Nonlinear Dynamic Analysis and Optimization of Closed-Form Planetary Gear System. Mathematical Problems in Engineering, 2013, 1–12. doi: 10.1155/2013/149046
  17. Pleguezuelos, M., Pedrero, J. I., Sánchez, M. B. (2013). Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears. Mathematical Problems in Engineering, 2013, 1–14. doi: 10.1155/2013/142849
  18. Chen, C. (2013). Power flow and efficiency analysis of epicyclic gear transmission with split power. Mechanism and Machine Theory, 59, 96–106. doi: 10.1016/j.mechmachtheory.2012.09.004
  19. Chen, C., Chen, J. (2015). Efficiency analysis of two degrees of freedom epicyclic gear transmission and experimental validation. Mechanism and Machine Theory, 87, 115–130. doi: 10.1016/j.mechmachtheory.2014.12.017
  20. Laus, L. P., Simas, H., Martins, D. (2012). Efficiency of gear trains determined using graph and screw theories. Mechanism and Machine Theory, 52, 296–325. doi: 10.1016/j.mechmachtheory.2012.01.011
  21. Strilets, O. R. (2015). Keruvannia zminamy shvydkosti za dopomohoiu dyferentsialnoi peredachi cherez epitsykl. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu, 4, 131–137.
  22. Malashchenko, V., Strilets, O., Strilets, V. (2017). Justification of efficiency of epicyclic gear train in device for speed changes management. Ukrainian Journal of Mechanical Engineering and Materials Science, 3 (1), 72–76.
  23. Strilets, O. R. (2007). Pat. No. 25335 UA. Zubchastyi dyferentsial z prystroiem dlia keruvannia zminamy shvydkosti. MPK (2006) F16N1/28. No. u200504847; declareted: 19.02.2007; published: 10.08.2007, Bul. No. 12.
  24. Strilets, O. R. (2007). Pat. No. 28489 UA. Planetarna korobka peredach. MPK (2006) V60K17/06. No. u200709132; declareted: 09.08.2007; published: 10.12.2007, Bul. No. 20.

Downloads

Published

2017-12-11

How to Cite

Mаlashchenkо V., Strilets О., & Strilets, V. (2017). Determining performance efficiency of the differential in a device for speed change through epicycle. Eastern-European Journal of Enterprise Technologies, 6(7 (90), 51–57. https://doi.org/10.15587/1729-4061.2017.110683

Issue

Section

Applied mechanics