Modeling and quantitative analysis of connectivity and conductivity in random networks of nanotubes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.112037

Keywords:

statistical modeling, random resistor networks, percolation, tunneling conductance, nanotubes, nanocomposites

Abstract

The work describes the framework that allows performing a computer simulation of complex random networks of conducting nanotubes embedded in the dielectric medium. The representative volume element filled with a large number of interconnected nanotubes is modeled and the tunneling conduction mechanism between adjacent tubes is considered. The principal goal is to develop a computational approach for the three­dimensional multielement structure simulation, which will be relatively simple, yet capable of producing realistic results.

The connectivity formation processes among nanotubes in random nanotube networks are studied using the elements of graph theory. All stages of the modeling process are discussed in details. The system conductivity model with taking into account the tunnel effect and intrinsic nanotube conductivities is formulated. The random resistor model is used to calculate the total equivalent conductivity of the network.

The results of the computer experiments on electrical conductivity simulations for different systems are presented. The dependencies of the electrical conductivity of nanotube networks in the insulating medium on the concentration of nanotubes, geometric parameters and properties of tunneling conductivity between individual tubes are investigated. It is found that the percolation threshold corresponds to the nanotube loading of 0.5 % when the aspect ratio of nanotubes is 160. Non­linear dependence between the aspect ratio and the percolation threshold was established. The analysis of computational complexity and calculation time is performed for quad­core computing systems.

Computer experiments carried out in a systematic fashion within the proposed framework can be useful when designing novel CNT­polymer composites for state of the art electronic applications. By following the predictions of the proposed model, tailoring of electrical properties of such composites can be made easier when adjusting the parameters of nanotubes and their concentration during the fabrication of the nanocomposite samples. 

Author Biographies

Andriy Stelmashchuk, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

Postgraduate student

Department of Radiophysics and Computer Technology

Ivan Karbovnyk, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

PhD, Associate Professor

Department of Radiophysics and Computer Technology

Halyna Klym, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Specialized Computer Systems

Oleksandr Berezko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Social Communication and Information Activities

Yuriy Kostiv, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Information Technology Security

Roman Lys, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

PhD

Department of Sensor and Semiconductor Electronics

References

  1. Davis, W. R., Slawson, R. J., Rigby, G. R. (1953). An Unusual Form of Carbon. Nature, 171 (4356), 756–756. doi: 10.1038/171756a0
  2. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354 (6348), 56–58. doi: 10.1038/354056a0
  3. Prolongo, S. G., Gude, M. R., Ureña, A. (2009). Synthesis and Characterisation of Epoxy Resins Reinforced with Carbon Nanotubes and Nanofibers. Journal of Nanoscience and Nanotechnology, 9 (10), 6181–6187. doi: 10.1166/jnn.2009.1554
  4. Zhang, Y., Li, H., Liu, P., Peng, Z. (2016). Study on electrical properties and thermal conductivity of carbon nanotube/epoxy resin nanocomposites with different filler aspect ratios. 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). doi: 10.1109/ichve.2016.7800771
  5. Zhou, Y. X., Wu, P. X., Cheng, Z.-Y., Ingram, J., Jeelani, S. (2008). Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polymer Letters, 2 (1), 40–48. doi: 10.3144/expresspolymlett.2008.6
  6. Karbovnyk, I., Olenych, I., Aksimentyeva, O., Klym, H., Dzendzelyuk, O., Olenych, Y., Hrushetska, O. (2016). Effect of Radiation on the Electrical Properties of PEDOT-Based Nanocomposites. Nanoscale Research Letters, 11 (1). doi: 10.1186/s11671-016-1293-0
  7. Zaumseil, J. (2015). Single-walled carbon nanotube networks for flexible and printed electronics. Semiconductor Science and Technology, 30 (7), 074001. doi: 10.1088/0268-1242/30/7/074001
  8. Park, S., Vosguerichian, M., Bao, Z. (2013). A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 5 (5), 1727–1752. doi: 10.1039/c3nr33560g
  9. Mendoza, M. O., Acosta, E. M. V., Prokhorov, E., Barcenas, G. L., Krishnan, S. K. (2016). Percolation Phenomena In Polymer Nanocomposites. Advanced Materials Letters, 7 (5), 353–359. doi: 10.5185/amlett.2016.6091
  10. Stelmashchuk, A., Karbovnyk, I., Bolesta, I. (2012). Percolation in a random network of conducting nanotubes: a computer simulation study. Proceedings of the 11-th International Conference "Modern Problems of Radio Engineering, Telecommunications and Computer Science". Lviv-Slavske, 240.
  11. Karbovnyk, I., Stelmashchuk, A., Bolesta, I., Klym, H. (2013). Percolating array of bent nanotubes studied by computer simulations. Proceedings of the 6-th International Conference "Advanced Computer Systems and Networks: Design and Application" (ACSN-2013). Lviv, 108–109.
  12. Stelmashchuk, A., Karbovnyk, I., Klym, H. (2016). Computer simulations of nanotube networks in dielectric matrix. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: 10.1109/tcset.2016.7452074
  13. Wang, Y., Shan, J. W., Weng, G. J. (2015). Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. Journal of Applied Physics, 118 (6), 065101. doi: 10.1063/1.4928293
  14. Colasanti, S., Bhatt, V. D., Lugli, P. (2014). 3D modeling of CNT networks for sensing applications. 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). doi: 10.1109/prime.2014.6872679
  15. Vakiv, M., Hadzaman, I., Klym, H., Shpotyuk, O., Brunner, M. (2011). Multifunctional thick-film structures based on spinel ceramics for environment sensors. Journal of Physics: Conference Series, 289, 012011. doi: 10.1088/1742-6596/289/1/012011
  16. Klym, H., Hadzaman, I., Ingram, A., Shpotyuk, O. (2014). Multilayer thick-film structures based on spinel ceramics1. Canadian Journal of Physics, 92 (7/8), 822–826. doi: 10.1139/cjp-2013-0597
  17. Klym, H., Hadzaman, I., Shpotyuk, O., Brunner, M. (2014). Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Research Letters, 9 (1), 149. doi: 10.1186/1556-276x-9-149
  18. Shpotyuk, O., Balitska, V., Brunner, M., Hadzaman, I., Klym, H. (2015). Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Physica B: Condensed Matter, 459, 116–121. doi: 10.1016/j.physb.2014.11.023
  19. Klym, H., Balitska, V., Shpotyuk, O., Hadzaman, I. (2014). Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectronics Reliability, 54 (12), 2843–2848. doi: 10.1016/j.microrel.2014.07.137
  20. Hadzaman, I., Klym, H., Shpotyuk, O. (2014). Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. International Journal of Nanotechnology, 11 (9/10/11), 843. doi: 10.1504/ijnt.2014.063793
  21. Klym, H., Shpotyuk, O., Ingram, A., Calvez, L., Hadzaman, I., Kostiv, Y. et. al. (2017). Influence of Free Volumes on Functional Properties of Modified Chalcogenide Glasses and Oxide Ceramics. Nanophysics, Nanomaterials, Interface Studies, and Applications, 479–493. doi: 10.1007/978-3-319-56422-7_36
  22. Pal, G., Kumar, S. (2016). Modeling of carbon nanotubes and carbon nanotube–polymer composites. Progress in Aerospace Sciences, 80, 33–58. doi: 10.1016/j.paerosci.2015.12.001
  23. Fakhim, B., Hassani, A., Rashidi, A., Ghodousi, P. (2013). Predicting the Impact of Multiwalled Carbon Nanotubes on the Cement Hydration Products and Durability of Cementitious Matrix Using Artificial Neural Network Modeling Technique. The Scientific World Journal, 2013, 1–8. doi: 10.1155/2013/103713
  24. Gong, S., Zhu, Z. H., Li, J., Meguid, S. A. (2014). Modeling and characterization of carbon nanotube agglomeration effect on electrical conductivity of carbon nanotube polymer composites. Journal of Applied Physics, 116 (19), 194306. doi: 10.1063/1.4902175
  25. Perumal, L., Leng, L. T., Tso, C. P. (2016). Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements. Journal of Nanomaterials, 2016, 1–9. doi: 10.1155/2016/6374092
  26. Araújo, F. C., d’Azevedo, E. F., Gray, L. J. (2010). Boundary-element parallel-computing algorithm for the microstructural analysis of general composites. Computers & Structures, 88 (11-12), 773–784. doi: 10.1016/j.compstruc.2010.03.001
  27. Yu, Y., Song, G., Sun, L. (2010). Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes. Journal of Applied Physics, 108 (8), 084319. doi: 10.1063/1.3499628
  28. Bao, W. S., Meguid, S. A., Zhu, Z. H., Weng, G. J. (2012). Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. Journal of Applied Physics, 111 (9), 093726. doi: 10.1063/1.4716010
  29. Hu, N., Masuda, Z., Yan, C., Yamamoto, G., Fukunaga, H., Hashida, T. (2008). The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology, 19 (21), 215701. doi: 10.1088/0957-4484/19/21/215701
  30. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S. (1985). Generalized many-channel conductance formula with application to small rings. Physical Review B, 31 (10), 6207–6215. doi: 10.1103/physrevb.31.6207
  31. Tamura, R., Tsukada, M. (1997). Electronic transport in carbon nanotube junctions. Solid State Communications, 101 (8), 601–605. doi: 10.1016/s0038-1098(96)00761-2
  32. Physical properties of carbon nanotubes. Volume 3 [Text] / R. Saito, G. Dresselhaus, M. S. Dresselhaus — London: Imperial College Press, 1998.
  33. Imry, Y., Landauer, R. (1999). Conductance viewed as transmission. Reviews of Modern Physics, 71 (2), S306–S312. doi: 10.1103/revmodphys.71.s306
  34. Buldum, A., Lu, J. P. (2001). Contact resistance between carbon nanotubes. Physical Review B, 63 (16). doi: 10.1103/physrevb.63.161403
  35. Naeemi, A., Meindl, J. D. (2008). Performance Modeling for Carbon Nanotube Interconnects. Carbon Nanotube Electronics, 163–190. doi: 10.1007/978-0-387-69285-2_7
  36. Hertel, T., Walkup, R. E., Avouris, P. (1998). Deformation of carbon nanotubes by surface van der Waals forces. Physical Review B, 58 (20), 13870–13873. doi: 10.1103/physrevb.58.13870
  37. Girifalco, L. A., Hodak, M., Lee, R. S. (2000). Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B, 62 (19), 13104–13110. doi: 10.1103/physrevb.62.13104
  38. Simmons, J. G. (1963). Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 34 (6), 1793–1803. doi: 10.1063/1.1702682
  39. Li, X. S. (2005). An overview of SuperLU. ACM Transactions on Mathematical Software, 31 (3), 302–325. doi: 10.1145/1089014.1089017
  40. Demmel, J. W., Gilbert, J. R., Li, X. S. (1999). SuperLU users guide. Lawrence Berkeley National Laboratory. doi: 10.2172/751785
  41. Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., Liu, J. W. H. (1999). A Supernodal Approach to Sparse Partial Pivoting. SIAM Journal on Matrix Analysis and Applications, 20 (3), 720–755. doi: 10.1137/s0895479895291765

Downloads

Published

2017-10-31

How to Cite

Stelmashchuk, A., Karbovnyk, I., Klym, H., Berezko, O., Kostiv, Y., & Lys, R. (2017). Modeling and quantitative analysis of connectivity and conductivity in random networks of nanotubes. Eastern-European Journal of Enterprise Technologies, 5(12 (89), 4–12. https://doi.org/10.15587/1729-4061.2017.112037

Issue

Section

Materials Science