Development of the electrochemical synthesis method of ultrafine cobalt powder for a superalloy production

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Sergey Vlasov National Mining University Yavornytskoho ave., 19, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-5537-6342

DOI:

https://doi.org/10.15587/1729-4061.2018.126928

Keywords:

cobalt ( 3) ammine complex, cobalt powder, superalloys, dendrite

Abstract

The electrochemical synthesis method for the preparation of ultrafine cobalt powder from the sulfate-ammonium electrolyte for the preparation of superalloys, has been developed. It was proposed to introduce ammonia to the electrolyte until рН=11. The electrolyte composition and the mechanism behind electrochemical processes during cobalt powder synthesis have been studied. The formation of the Co2+ammine complex has been observed. The precipitate dissolved in the mother liquor during a week, with the formation of a purple-red solution. By recording cathodic and cyclic cathodic-anodic curves, it was discovered that the solution with dissolved precipitate contained Со3+. It was revealed that the synthesis process occurs in two stages «Со3+–Со2+–Со0», which results in the increased polarization and formation of ultrafine cobalt powder. The influence of electrolyte temperature on electrolysis and powder characteristics has been studied. It was revealed that higher temperatures lead to larger particle size and formation of compact metal particles. It has been determined that the maximum electrolyte temperature should not exceed 30 °С. It is shown that under these conditions, the Co powder is composed of spherical particles that form coral-like aggregates with the size of 35–150 µm, which can be easily ground. The cobalt powder forms with the cathodic current yield of 39 % and specific power consumption of 48 kW·h/kg, which indicates a high effectiveness of the developed method.

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Sergey Vlasov, National Mining University Yavornytskoho ave., 19, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

Doctor of Technical Sciences, Professor

Department of underground mining

Department of building manufacture

References

  1. Zhao, X., Ma, L., Yao, Y., Yang, M., Ding, Y., Shen, X. (2010). Electrochemical energy storage of Co powders in alkaline electrolyte. Electrochimica Acta, 55 (3), 1169–1174. doi: 10.1016/j.electacta.2009.10.012
  2. Chung, S.-R., Wang, K.-W., Perng, T.-P. (2006). Electrochemical Hydrogenation of Crystalline Co Powder. Journal of The Electrochemical Society, 153 (6), A1128. doi: 10.1149/1.2189978
  3. Li, J., Zhao, X., Du, W., Yang, M., Ma, L., Ding, Y., Shen, X. (2013). Effect of germanium on electrochemical performance of chain-like Co–P anode material for Ni/Co rechargeable batteries. Transactions of Nonferrous Metals Society of China, 23 (7), 2060–2065. doi: 10.1016/s1003-6326(13)62696-5
  4. Xu, H., Zhang, Z. J., Zhang, P., Cui, C. Y., Jin, T., Zhang, Z. F. (2017). Formation of nanograins in Ni-Co based superalloys compressed quasistatically at high temperature. Scripta Materialia, 136, 92–96. doi: 10.1016/j.scriptamat.2017.04.008
  5. Xue, F., Zenk, C. H., Freund, L. P., Hoelzel, M., Neumeier, S., Göken, M. (2018). Double minimum creep in the rafting regime of a single-crystal Co-base superalloy. Scripta Materialia, 142, 129–132. doi: 10.1016/j.scriptamat.2017.08.039
  6. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  7. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: 10.15587/1729-4061.2017.108839
  8. Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: 10.15587/1729-4061.2016.79559
  9. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  10. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  11. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  12. Kotok, V., Kovalenko, V. (2018). Study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: 10.15587/1729-4061.2018.121679
  13. Fang, S., Shi, Z. S., Bai, Q., Jiang, J. Y., Wang, S. Y., Lin, J. G. (2016). An Investigation of Direct Powder Forging of Nickel Superalloy FGH96. Key Engineering Materials, 716, 793–799. doi: 10.4028/www.scientific.net/kem.716.793
  14. Bolokang, A. S., Phasha, M. J., Bhero, S. (2013). Comparison of metastable phases induced by heat treatment of unmilled and milled cobalt powders. International Journal of Refractory Metals and Hard Materials, 36, 111–115. doi: 10.1016/j.ijrmhm.2012.08.001
  15. Freund, L. P., Giese, S., Schwimmer, D., Höppel, H. W., Neumeier, S., Göken, M. (2017). High temperature properties and fatigue strength of novel wrought γ/γ′ Co-base superalloys. Journal of Materials Research, 32 (24), 4475–4482. doi: 10.1557/jmr.2017.315
  16. Mudgal, D., Singh, S., Prakash, S. (2012). High Temperature Cyclic Oxidation Behavior of Ni and Co Based Superalloys. Journal of Minerals and Materials Characterization and Engineering, 11 (03), 211–219. doi: 10.4236/jmmce.2012.113017
  17. Prasad, N. E., Wanhill, R. J. H. (Eds.) (2017). Aerospace Materials and Material Technologies. Vol. 1: Aerospace Materials. Springer, 856. doi: 10.1007/978-981-10-2134-3
  18. Prasad, N. E., Wanhill, R. J. H. (Eds.) (2017). Aerospace Materials and Material Technologies. Vol. 2: Aerospace Material Technologies. Springer, 557. doi: 10.1007/978-981-10-2143-5
  19. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: 10.15587/1729-4061.2017.91205
  20. Redden, L. D., Greaves, J. N. (1992). The technical and economic aspects of producing high-purity cobalt and nickel from superalloy scrap utilizing a double-membrane electrolytic cell. Hydrometallurgy, 29 (1-3), 547–565. doi: 10.1016/0304-386x(92)90032-u
  21. Liu, S., Xu, K., Wang, M. (2006). Preparation of Co powders for cemented carbides in China. International Journal of Refractory Metals and Hard Materials, 24 (6), 405–412. doi: 10.1016/j.ijrmhm.2006.05.003
  22. Ha, G. H., Kim, B. K. (2002). Synthesis of ultrafine WC/Co powder by mechanochemical process. Powder Metallurgy, 45 (1), 29–32. doi: 10.1179/003258902225001506
  23. Yi, Z., Shao, G., Duan, X., Sun, P., Shi, X., Xiong, Z., Guo, J. (2005). Preparation of WC-Co powder by direct reduction and carbonization. China Particuology, 3 (5), 286–288. doi: 10.1016/s1672-2515(07)60203-6
  24. Sohn, H. Y., Zhang, Z., Deevi, S. C., PalDey, S. (2004). Chemical Vapor Synthesis of Ultraflne Fe-Co Powder. High Temperature Materials and Processes, 23 (5-6). doi: 10.1515/htmp.2004.23.5-6.329
  25. Gao, J. Z., Chun, Y., Niao, J., Yang, W., Guan, F., Quan, X. et. al. (2001). Preparation of Ultrafine Cobalt Powder by Chemical Reduction in Aqueous Solution. Chinese Chemical Letters, 12 (6).
  26. Li, Y., Lin, C., Cao, R. (2010). Study on nanometer ε-cobalt powder prepared by precipitation–hydrogen reduction in Co(II)–(NH4)2CO3–H2O system. International Journal of Refractory Metals and Hard Materials, 28 (2), 270–273. doi: 10.1016/j.ijrmhm.2009.10.011
  27. Jović, V. D., Maksimović, V., Pavlović, M. G., Popov, K. I. (2005). Morphology, internal structure and growth mechanism of electrodeposited Ni and Co powders. Journal of Solid State Electrochemistry, 10 (6), 373–379. doi: 10.1007/s10008-005-0687-1
  28. Jović, V. D., Jović, B. M., Pavlović, M. G. (2006). Electrodeposition of Ni, Co and Ni–Co alloy powders. Electrochimica Acta, 51 (25), 5468–5477. doi: 10.1016/j.electacta.2006.02.022
  29. Jović, V. D., Jović, B. M., Maksimović, V., Pavlović, M. G. (2007). Electrodeposition and morphology of Ni, Co and Ni–Co alloy powders. Electrochimica Acta, 52 (12), 4254–4263. doi: 10.1016/j.electacta.2006.12.003
  30. Kovalenko, V., Kotok, V., Vlasov, S. (2018). Definition of synthesis parameters of ultrafine nickel powder by direct electrolysis for application of a superalloy production. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 27–33. doi: 10.15587/1729-4061.2018.121595

Downloads

Published

2018-03-26

How to Cite

Kovalenko, V., Kotok, V., & Vlasov, S. (2018). Development of the electrochemical synthesis method of ultrafine cobalt powder for a superalloy production. Eastern-European Journal of Enterprise Technologies, 2(6 (92), 41–47. https://doi.org/10.15587/1729-4061.2018.126928

Issue

Section

Technology organic and inorganic substances