Simulation high-voltage triple-junction photovoltaic converters based on amorphous and microcrystalline silicon
DOI:
https://doi.org/10.15587/1729-4061.2013.14504Keywords:
Triple-junction thin-film photovoltaic converter, amorphous and microcrystalline silicon, numerical simulationAbstract
The design of a triple-junction thin-film photovoltaic converter with hydrogen and oxygen microcrystalline and amorphous silicon layers α-Si:H(n-i-p)/μс-Si:O(n-i-p)/μс-Si:H(n-i-p) is suggested. The physical model and the software for simulation performances of these photovoltaic converters are developed. The numerical simulation results demonstrate that efficiency of the proposed thin-film photovoltaic converters can be increased to 16 %, open-circuit voltage UOC=1.957 V, fill factor ff=78%. The analyses of the triple-junction structure’s external quantum efficiency spectral dependences shows that combining α-Si:H and μс-Si:H n-i-p junction admits to use different solar irradiation regions to expand spectral sensitivity of silicon photovoltaic converter in UV and near-IR regions. Improving the performance ensures by increasing absorptance in the visible region (λ=500-800 nm) to 40-60 % and in the near-infrared region (λ=800-1100 nm) to 75-80 %.References
- Green, M. A. Solar cell efficiency tables (version 41) [Текст] / M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop // Prog. Photovolt: Res. Appl. - 2013. - Т. 21. - С.1-11.
- Cousins, P. J. Gen III: improved performance at lower cost [Текст] / P.J. Cousins, D.D. Smith, H.C. Luan. // 35th IEEE PVSC, Honolulu. HI. - 2010. – С.112-115.
- Benagli, S. High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D Reactor [Текст]/ S. Benagli, D. Borrello, E. Vallat-Sauvain // 24th European Photovoltaic Solar Energy Conference. Hamburg. – 2009. – С. 234-239.
- Чеботарев, С. Н. Моделирование зависимостей функциональных характеристик кремниевых солнечных элементов, полученных методом ионно-лучевого осаждения от толщины и уровня легирования фронтального слоя [Текст] / С.Н. Чеботарев, А.С. Пащенко, М.Л. Лунина // Вестник Южного научного центра РАН. – 2012. - Т. 7. - № 4. - С.25-30.
- Лунин, Л.С. Ионно-лучевое осаждение фотоактивных нанослоев кремниевых солнечных элементов [Текст]/ Л.С. Лунин, С.Н. Чеботарев, А.С. Пащенко, Л.Н. Болобанова // Неорганические материалы. – 2012. - Т. 48. - № 5. - С.517-522.
- Лунин, Л.С. Моделирование и исследование характеристик фотоэлектрических преобразователей на основе GaAs и GaSb [Текст]/ Л.С. Лунин, А.С. Пащенко // Журнал технической физики. - 2011. - Т. 81. - вып. 9. - С. 71-76.
- Fonash, S. A manual for AMPS-1D for Windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures [Текст] / S. Fonash, J. Arch, J. Ciuffi. - Pennsylvania: Pennsylvania State University Press, 1997. – 126 с.
- Palankovski, V. Analysis and simulation of heterostructure devices [Текст] / V. Palankovski, R.Quay - Wien: Springer-Verlag, 2004. – 289 с.
- Fonash S. Solar cell device physics [Текст] / S. Fonash. - New York: Academic Press, 2010. – 353 с.
- Carlson, D.E. Semiconductors and Semimetals [Текст] / Carlson, D.E. - Amsterdam: Academic Press, 1984. – 385 с.
- Jensen, N. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells [Текст] / N. Jensen, R.M. Hausner, R.B: Bergmann // Prog. Photovolt: Res. Appl. - 2002. - Т. 10 - С. 1–13.
- Shockley, W. Statistics of the recombination of holes and electrons [Текст] / W. Shockley, W.T. Read. // Phys. Rev. - 1952. - Т. 87. - с. 835.
- Schropp, R.E.I. Amorphous and microcrystalline silicon solar cells – modeling, materials and device technology [Текст] / R.E.I. Schropp and M. Zeman. - Kluwer. Boston/Dordrecht/London, 1998. - 253 с.
- Колтун, М.М. Оптика и метрология солнечных элементов [Текст] / М.М. Колтун – М.: «Наука». - 1985. - 281 с.
- Green, M.A. Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. (2013). Solar cell efficiency tables (version 41). Prog. Photovolt: Res. Appl., 21, 1-11.
- Cousins, P. J., Smith, D.D., Luan H.C. (2010). Gen III: improved performance at lower cost. 35th IEEE PVSC, Honolulu. HI, 112-115.
- Benagli, S., Borrello, D., Vallat-Sauvain, E. (2009). High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D Reactor. 24th European Photovoltaic Solar Energy Conference. Hamburg, 234-239.
- Chebotarev, S. N., Pashchenko, A. S., Lunina, M.L (2011). Simulation of dependences of functional characteristics of Si solar cells grown by ion beam deposition from thickness and doping frontal layer. Vestnik SSC RAS. 7(4), 25-30.
- Lunin, L.S., Chebotarev, S. N., Pashchenko, A. S., Bolobanova, L.N. (2012). Ion beam deposition of photoactive nanolayers for silicon solar cells. Inorganic materials, 48(5), 517-522.
- Lunin, L.S., Pashchenko, A. S. (2011). Simulation and investigation of the GaAs and GaSb photovoltaic cell performance. Zhurnal Tekhnicheskoі Fiziki, 81(9), 71–76.
- Fonash, S., Arch, J., Ciuffi, J. (1997). A manual for AMPS-1D for Windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures. Pennsylvania: Pennsylvania State University Press.
- Palankovski, V., Quay, R. (2004). Analysis and simulation of heterostructure devices. Wien: Springer-Verlag.
- Fonash, S. (2010). Solar cell device physics. New York: Academic Press.
- Carlson, D.E. (1984). Semiconductors and Semimetals. Amsterdam: Academic Press.
- Jensen, N., Hausner, R.M., Bergmann, R.B. (2002). Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells. Prog. Photovolt: Res. Appl., 10, 1–13.
- Shockley, W., Read, W.T. (1952). Statistics of the recombination of holes and electrons. Phys. Rev., 87, 835-842.
- Schropp, R.E.I., Zeman, M. (1998). Amorphous and microcrystalline silicon solar cells – modeling, materials and device technology. Kluwer. Boston/Dordrecht/London.
- Koltun, .M.M. (1985). Optic and metrology of solar cells. Мoscow, USSR: «Nauka».
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Сергій Миколайович Чеботарьов, Олександр Сергійович Пащенко, Марина Леонидівна Луніна, Володимир Олександрович Ірха
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.