Motion equations of the single­mass vibratory machine with a rotary­oscillatory motion of the platform and a vibration exciter in the form of a passive auto­balancer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150339

Keywords:

inertial vibration exciter, dual frequency vibrations, resonance vibratory machine, auto-balancer, inertial vibratory machine

Abstract

This paper describes a mechanical model of the single-mass vibratory machine with a rotary-oscillatory motion of the platform and a vibration exciter in the form of a passive auto-balancer. The platform can oscillate around a fixed axis. The platform holds a multi-ball, a multi-roller, or a multi-pendulum auto-balancer. The auto-balancer's axis of rotation is parallel to the turning axis of the platform. The auto-balancer rotates relative to the platform at a constant angular velocity. The auto-balancer's casing hosts an unbalanced mass in order to excite rapid oscillations of the platform at rotation speed of the auto-balancer. It was assumed that the balls or rollers roll over rolling tracks inside the auto-balancer's casing without detachment or slip. The relative motion of loads is impeded by the Newtonian forces of viscous resistance. Under a normally operating auto-balancer, the loads (pendulums, balls, rollers) cannot catch up with the casing and get stuck at the resonance frequency of the platform's oscillations. This induces the slow resonant oscillations of the platform. Thus, the auto-balancer is applied to excite the dual-frequency vibrations.

Employing the Lagrangian equations of the second kind, we have derived differential motion equations of the vibratory machine. It was established that for the case of a ball-type and a roller-type auto-balancer the differential motion equations of the vibratory machine are similar (with accuracy to signs) and for the case of a pendulum-type vibratory machine, they differ in their form.

Differential equations of the vibratory machine motion are recorded for the case of identical loads.

The models constructed are applicable both in order to study the dynamics of the respective vibratory machines analytically and in order to perform computational experiments.

In analytical research, the models are designed to search for the steady-state motion modes of the vibratory machine, to determine the condition for their existence and stability

Author Biographies

Volodymyr Yatsun, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Road Cars and Building

Irina Filimonikhina, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Mathematics and Physics

Nataliia Podoprygora, Volodymyr Vynnychenko Central Ukrainian State Pedagogical University Shevchenka str., 1, Kropyvnytskyi, Ukraine, 25006

Doctor of Pedagogical Sciences, Associate Professor

Department of Natural Sciences and their Teaching Methods

Oleksandra Hurievska, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Mathematics and Physics

References

  1. Bukin, S. L., Maslov, S. G., Lyutiy, A. P., Reznichenko, G. L. (2009). Intensifikaciya tekhnologicheskih processov vibromashin putem realizacii bigarmonicheskih rezhimov raboty. Obogashchenie poleznyh iskopaemyh, 36 (77)-37 (78), 81–89.
  2. Kryukov, B. I. (1967). Dinamika vibracionnyh mashin rezonansnogo tipa. Kyiv, 210.
  3. Lanets, O. S. (2008). Vysokoefektyvni mizhrezonansni vibratsiyni mashyny z elektromahnitnym pryvodom (Teoretychni osnovy ta praktyka stvorennia). Lviv: Vyd-vo Nats. un-tu «Lvivska politekhnika», 324.
  4. Machabeli, L. I. (1965). O dvizhenii diska s dvumya mayatnikami. Izv. AN SSSR, Mekhanika, 2, 13–18.
  5. Antipov, V. I., Ruin, A. A. (2007). Dynamics of a resonance low-frequency parametrically excited vibration machine. Journal of Machinery Manufacture and Reliability, 36 (5), 400–405. doi: https://doi.org/10.3103/s1052618807050020
  6. Antipov, V. I., Dencov, N. N., Koshelev, A. V. (2014). Dinamika parametricheski vozbuzhdaemoy vibracionnoy mashiny s izotropnoy uprugoy sistemoy. Fundamental'nye issledovaniya, 8, 1037–1042. Available at: http://www.fundamental-research.ru/ru/article/view?id=34713
  7. Dencov, N. N. (2015). Dinamika vibracionnogo grohota na mnogokratnom kombinacionnom parametricheskom rezonanse. Fundamental'nye issledovaniya, 4, 55–60. Available at: http://www.fundamental-research.ru/ru/article/view?id=37123
  8. Antipov, V. I., Palashova, I. V. (2010). Dynamics of a two-mass parametrically excited vibration machine. Journal of Machinery Manufacture and Reliability, 39 (3), 238–243. doi: https://doi.org/10.3103/s1052618810030052
  9. Sommerfeld, A. (1904). Beitrage zum dinamischen Ausbay der Festigkeislehre. Zeitschriff des Vereins Deutsher Jngeniere, 48, 631–636.
  10. Lanets, O. V., Shpak, Ya. V., Lozynskyi, V. I., Leonovych, P. Yu. (2013). Realizatsiya efektu Zommerfelda u vibratsiynomu maidanchyku z inertsiynym pryvodom. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni, 47, 12–28. Available at: http://nbuv.gov.ua/UJRN/Avtomatyzac_2013_47_4
  11. Kuzo, I. V., Lanets, O. V., Gurskyi, V. M. (2013). Synthesis of low-frequency resonance vibratory machines with an aeroinertia drive. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 2, 60–67. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2013_2_11
  12. Filimonihin, G. B., Yacun, V. V. (2015). Method of excitation of dual frequency vibrations by passive autobalancers. Eastern-European Journal of Enterprise Technologies, 4 (7 (76)), 9–14. doi: https://doi.org/10.15587/1729-4061.2015.47116
  13. Artyunin, A. I. (1993). Issledovanie dvizheniya rotora s avtobalansirom. Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie, 1, 15–19.
  14. Filimonikhin, H. B. (2004). Zrivnovazhennia i vibrozakhyst rotoriv avtobalansyramy z tverdymy koryhuvalnymy vantazhamy. Kirovohrad: KNTU, 352.
  15. Ryzhik, B., Sperling, L., Duckstein, H. (2004). Non-synchronous Motions Near Critical Speeds in a Single-plane Autobalancing Device. Technische Mechanik, 24, 25–36.
  16. Artyunin, A. I., Eliseyev, S. V. (2013). Effect of “Crawling” and Peculiarities of Motion of a Rotor with Pendular Self-Balancers. Applied Mechanics and Materials, 373-375, 38–42. doi: https://doi.org/10.4028/www.scientific.net/amm.373-375.38
  17. Jung, D., DeSmidt, H. (2017). Nonsynchronous Vibration of Planar Autobalancer/Rotor System With Asymmetric Bearing Support. Journal of Vibration and Acoustics, 139 (3), 031010. doi: https://doi.org/10.1115/1.4035814
  18. Jung, D. (2018). Supercritical Coexistence Behavior of Coupled Oscillating Planar Eccentric Rotor/Autobalancer System. Shock and Vibration, 2018, 1–19. doi: https://doi.org/10.1155/2018/4083897
  19. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Equations of motion of vibration machines with a translational motion of platforms and a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 19–25. doi: https://doi.org/10.15587/1729-4061.2017.111216
  20. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Search for two-frequency motion modes of single-mass vibratory machine with vibration exciter in the form of passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 58–66. doi: https://doi.org/10.15587/1729-4061.2017.117683
  21. Yatsun, V., Filimonikhin, G., Haleeva, A., Nevdakha, A. (2018). On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 2 (7 (92)), 59–67. doi: https://doi.org/10.15587/1729-4061.2018.128265
  22. Filimonikhin, G., Yatsun, V., Dumenko, K. (2016). Research into excitation of dual frequency vibrational-rotational vibrations of screen duct by ball-type auto-balancer. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 47–52. doi: https://doi.org/10.15587/1729-4061.2016.72052
  23. Yatsun, V., Filimonikhin, G., Nevdakha, A., Pirogov, V. (2018). Experimental study into rotational-oscillatory vibrations of a vibration machine platform excited by the ball auto-balancer. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 34–42. doi: https://doi.org/10.15587/1729-4061.2018.140006
  24. Strauch, D. (2009). Classical Mechanics: An Introduction. Springer-Verlag Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-540-73616-5

Downloads

Published

2018-12-10

How to Cite

Yatsun, V., Filimonikhina, I., Podoprygora, N., & Hurievska, O. (2018). Motion equations of the single­mass vibratory machine with a rotary­oscillatory motion of the platform and a vibration exciter in the form of a passive auto­balancer. Eastern-European Journal of Enterprise Technologies, 6(7 (96), 58–67. https://doi.org/10.15587/1729-4061.2018.150339

Issue

Section

Applied mechanics