Analysis of the road traffic management system in the neural network development perspective
DOI:
https://doi.org/10.15587/1729-4061.2019.160049Keywords:
Intelligent Transportation Systems, neural networks, road traffic managementAbstract
The research goal of the paper is to present the issues connected with road traffic management systems and to illustrate a management system that uses Intelligent Transportation Systems and neural networks. The use of Intelligent Transportation Systems (ITS) is a method of improving the conditions of communications, making it independent from the development of communications infrastructure. The attributes of neural networks are focused on solving the problems of optimisation, which involve the development of optimal strategies for traffic management. The proposed road traffic management system that uses ITS and neural networks can be applied in prediction of the conditions of communications in road traffic management.
The paper presents the results of qualitative research carried out in the aspect of traffic volume forecasting on selected national roads, supported by a scientific search and discourse on logistic aspects of traffic management, with particular emphasis on Intelligent Transport Systems, in order to verify the effectiveness of the implementation of neural networks. The above mentioned issues are extremely important due to the necessity of knowing the expected load of routes. Traffic fluctuations related to factors such as time, traffic, road architecture and capacity utilization are important elements of traffic intensity. The study served to verify the effectiveness of four independent neural networks, forecasting the traffic volume, for seven days of the week, at particular time points. Empirical data utilised in presented qualitative research was derived from motion sensors, installed on selected national roads, at specific time intervals. It enabled prospects for the development of neural networks to be determined in a model perspective, constituting a set of artificial intelligence methods, in the context of vehicle traffic volume, which is characterised by certain repetitive regularities. The author's model of introducing an algorithm based on neural networks in application to measurements performed in transport in terms of quality, quantity and methods of data acquisition affects into the presented results. Different systems have been analyzed that are used to obtain data for modeling. As a result of various doubts, system maladjustments or excessive costs, alternative solutions have been proposed that can eliminate the presented problems. Solutions have been proposed that limit some of the problems reported by the authors in this regard. The presented research results justified the use of neural networks in measurements in transport. The results of the measurements were obtained in accordance with the actual observations and compared with the results of other systems. The authors analyze further required work and the possibilities of improving the solutions usedReferences
- Faye, S., Chaudet, C. (2016). Characterizing the Topology of an Urban Wireless Sensor Network for Road Traffic Management. IEEE Transactions on Vehicular Technology, 65 (7), 5720–5725. doi: https://doi.org/10.1109/tvt.2015.2465811
- Konatowski, S., Gołgowski, M. (2017). Koncepcja systemu monitorowania ruchu pojazdów drogowych. Przegląd Elektrotechniczny, 1 (10), 66–70. doi: https://doi.org/10.15199/48.2017.10.15
- Skowron-Grabowska, B. (2014). Business models in transport services. Przegląd Organizacji, 1, 35–39.
- Zlocki, A., Rösener, C., Klaudt, S., Eckstein, L. (2018). Ganzheitliche Werkzeugkette für die Entwicklung und Bewertung des automatisierten Fahrens. ATZextra, 23 (S5), 16–21. doi: https://doi.org/10.1007/s35778-018-0046-3
- Strubbe, T., Thenée, N., Wieschebrink, C. (2017). IT-Sicherheit in Kooperativen Intelligenten Verkehrssystemen. Datenschutz Und Datensicherheit – DuD, 41 (4), 223–226. doi: https://doi.org/10.1007/s11623-017-0762-7
- Naumann, M., Orzechowski, P. F., Burger, C., Şahin Taş, Ö., Stiller, C. (2017). Herausforderungen für die Verhaltensplanung kooperativer automatischer Fahrzeuge. AAET Automatisiertes und vernetztes Fahren. Braunschweig, 287–307.
- Torbacki, W. (2017). Evaluation of exploitation factors in fleet vehicles management using fuzzy logic. Autobusy: technika, eksploatacja, systemy transportowe, 18 (6), 1104–1107.
- Rajak, S., Parthiban, P., Dhanalakshmi, R. (2016). Sustainable transportation systems performance evaluation using fuzzy logic. Ecological Indicators, 71, 503–513. doi: https://doi.org/10.1016/j.ecolind.2016.07.031
- Gauda, K. (2016). The role of genetic algorithms in the process of optimization determining driving routes. Autobusy: technika, eksploatacja, systemy transportowe, 17 (11), 54–57.
- Karakatič, S., Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing, 27, 519–532. doi: https://doi.org/10.1016/j.asoc.2014.11.005
- Stiller, C., Burgard, W., Deml, B., Eckstein, L., Flemisch, F. (2018). Kooperativ interagierende Automobile. At – Automatisierungstechnik, 66 (2), 81–99. doi: https://doi.org/10.1515/auto-2017-0129
- Dougherty, M. (1995). A review of neural networks applied to transport. Transportation Research Part C: Emerging Technologies, 3 (4), 247–260. doi: https://doi.org/10.1016/0968-090x(95)00009-8
- Karlaftis, M. G., Vlahogianni, E. I. (2011). Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies, 19 (3), 387–399. doi: https://doi.org/10.1016/j.trc.2010.10.004
- Brzozowska, A. (2010). Organization of Transport. Theoretical Approach. Economical and Organizational Aspects of Transportation Processes. Częstochowa: Wydawnictwo Wydziału Zarządzania Politechniki Częstochowskiej, 7–22.
- Drechny, M., Kolasa, M. (2016). Sztuczna sieć neuronowa wspomagająca sterowanie oświetleniem ulicznym. Rynek Energii, 2 (123), 90–95.
- Kumar, K., Parida, M., Katiyar, V. K. (2013). Short Term Traffic Flow Prediction for a Non Urban Highway Using Artificial Neural Network. Procedia – Social and Behavioral Sciences, 104, 755–764. doi: https://doi.org/10.1016/j.sbspro.2013.11.170
- Pamuła, T. (2012). Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks. Archives of Transport, 24 (4). doi: https://doi.org/10.2478/v10174-012-0032-2
- Chan, K. Y., Dillon, T. S., Singh, J., Chang, E. (2012). Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm. IEEE Transactions on Intelligent Transportation Systems, 13 (2), 644–654. doi: https://doi.org/10.1109/tits.2011.2174051
- Lorenzo, M., Matteo, M. (2013). OD Matrices Network Estimation from Link Counts by Neural Networks. Journal of Transportation Systems Engineering and Information Technology, 13 (4), 84–92. doi: https://doi.org/10.1016/s1570-6672(13)60117-8
- Park, J., Murphey, Y. L., McGee, R., Kristinsson, J. G., Kuang, M. L., Phillips, A. M. (2014). Intelligent Trip Modeling for the Prediction of an Origin–Destination Traveling Speed Profile. IEEE Transactions on Intelligent Transportation Systems, 15 (3), 1039–1053. doi: https://doi.org/10.1109/tits.2013.2294934
- Naranjo, J. E., Jiménez, F., Serradilla, F. J., Zato, J. G. (2012). Floating Car Data Augmentation Based on Infrastructure Sensors and Neural Networks. IEEE Transactions on Intelligent Transportation Systems, 13 (1), 107–114. doi: https://doi.org/10.1109/tits.2011.2180377
- Deka, L., Quddus, M. (2014). Network-level accident-mapping: Distance based pattern matching using artificial neural network. Accident Analysis & Prevention, 65, 105–113. doi: https://doi.org/10.1016/j.aap.2013.12.001
- Durduran, S. S. (2010). A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform. Expert Systems with Applications, 37 (12), 7729–7736. doi: https://doi.org/10.1016/j.eswa.2010.04.068
- Stuhr, R. (2018). Grundlagen zur Bilanzierung der Straßeninfrastruktur. Ansätze Zur Bilanzierung Des Staatlichen Straßeninfrastrukturvermögens, 25–78. doi: https://doi.org/10.1007/978-3-658-23609-0_2
- Ten Hompel, M., Henke, M. (2017). Logistik 4.0 – Ein Ausblick auf die Planung und das Management der zukünftigen Logistik vor dem Hintergrund der vierten industriellen Revolution. Handbuch Industrie 4.0 Bd.4, 249–259. doi: https://doi.org/10.1007/978-3-662-53254-6_13
- Haas, A. (2018). Intelligence Systeme in Transition zwischen Theorie und Praxis – ein Bezugsrahmen des Metamodells. Intelligence Systeme Im Logistik- Und Supply Chain Management, 93–198. doi: https://doi.org/10.1007/978-3-658-21466-1_3
- Matthaei, R., Reschka, A., Rieken, J., Dierkes, F., Ulbrich, S., Winkle, T., Maurer, M. (2015). Autonomes Fahren. Handbuch Fahrerassistenzsysteme, 1139–1165. doi: https://doi.org/10.1007/978-3-658-05734-3_61
- Winkle, T. (2015). Entwicklungs- und Freigabeprozess automatisierter Fahrzeuge: Berücksichtigung technischer, rechtlicher und ökonomischer Risiken. Autonomes Fahren, 611–635. doi: https://doi.org/10.1007/978-3-662-45854-9_28
- Kleen, P., Albrecht, J., Jasperneite, J., Richter, D. (2018). Funktionale Sicherheit von autonomen Transportsystemen in flexiblen I4.0 Fertigungsumgebungen. Echtzeit Und Sicherheit, 11–20. doi: https://doi.org/10.1007/978-3-662-58096-7_2
- Ulusay-Alpay, B. (2016). Informationstechnologie unter Erreichbarkeit –intelligentes Transportsystem: eine Studie für den Stadtverkehr in Istanbul. REAL CORP 2016–SMART ME UP! How to become and how to stay a Smart City, and does this improve quality of life? Proceedings of 21st International Conference on Urban Planning, Regional Development and Information Society. CORP–Competence Center of Urban and Regional Planning, 369–374.
- Winkle, T. (2015). Sicherheitspotenzial automatisierter Fahrzeuge: Erkenntnisse aus der Unfallforschung. Autonomes Fahren, 351–376. doi: https://doi.org/10.1007/978-3-662-45854-9_17
- Holland, H. (2018). Connected Cars. Dialogmarketing Und Kundenbindung Mit Connected Cars, 51–81. doi: https://doi.org/10.1007/978-3-658-22929-0_3
- Buttgereit, A. (2017). Prozessorientierte Qualitaetssicherung im kommunalen Strassenbau. Strasse und Autobahn, 68 (7), 507–514.
- Ebert, I. (2017). Automatisiertes Fahren aus Sicht der Versicherer. Autonome Systeme und neue Mobilität, 65–72. doi: https://doi.org/10.5771/9783845281667-65
- Witkowski, J. (2017). Globaland local logistics strategies in international supply chains. Nauki o zarządzaniu, 31, 4–11. doi: https://doi.org/10.15611/noz.2017.2.01
- Mesjasz-Lech, A. (2016). Cooperation in logistics networks – challenges and limitations. Zeszyty Naukowe Politechniki Śląskiej, 90, 81–96.
- Schäffer, S. (2017). Verkehrspolitik. Jahrbuch der Europäischen Integration 2017, 317–320. doi: https://doi.org/10.5771/9783845284897-316
- Krawczyk, S. (2009). Logistic controlling in transport networks. Prace Naukowe Politechniki Warszawskiej, 69, 89–100.
- Nogalski, B., Niewiadomski, P. (2017). Participation in the network as an innovation growth factor and the way towards a flexible organization. Management Forum, 5 (3), 20–30. doi: https://doi.org/10.15611/mf.2017.3.04
- Peddinti, V., Povey, D., Khudanpur, S. (2015). A time delay neural network architecture for efficient modeling of long temporal contexts. Sixteenth Annual Conference of the International Speech Communication Association. Dresden.
- Golowko, K., Zimmermann, V., Zimmer, D. (2017). Automatisiertes Fahren Einflüsse auf die Rückhaltesysteme. ATZ – Automobiltechnische Zeitschrift, 119 (7-8), 26–33. doi: https://doi.org/10.1007/s35148-017-0070-4
- Salman, Y., Ku-Mahamud, K., Kamioka, E. (2017). Distance measurement for self-driving cars using stereo camera. Proceedings of the 6th International Conference of Computing & Informatics. Sintok: School of Computing, 235–242.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Anna Brzozowska, Dagmara Bubel, Antonina Kalinichenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.