A research of chemical nature and surface properties of plant disperse fillers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.193383

Keywords:

plant waste, surface, chemical nature, functional group, acid-base characteristics

Abstract

Chemical nature and surface properties of plant disperse fillers are investigated: buckwheat (BH) and oat (OH) husk, wood (WF) and conifer flour (CF). Using IR spectroscopy, it was found that oxygen-containing atomic groups –OH, –C–O–, –C=O prevail in the filler components. It was found that a hydroxyl-hydrate layer of functional groups is present on the surface of air-dry fillers. By potentiometric titration of aqueous suspensions using the Parks–Bobyrenko method, it was determined that all fillers are of the «polyfunctional solid» type. It is shown that the hydroxyl-hydrate surface layer consists of functional groups with similar values of acid-base characteristics. Functional groups of acidic nature were additionally found on the surface of the fillers: groups with pKa≈4.37−5.66 on the BH surface, groups with pKa≈4.49−4.90 on the CF surface and groups with pKa≈3.91−4.30 on the WF surface. As a result of potentiometric titration, it was shown that the surface acidity of the fillers decreases in the WF>CF>BH>ОH series, which coincides with the one in which the total cellulose and lignin content decreases, and the resistance of fillers to thermal-oxidative breakdown increases. It was found that the rate of hydrolytic processes in aqueous suspensions at the interface decreases in the ОH>CF>BH>WF series and inversely depends on the concentration of functional groups on the surface of the fillers, and also that the change in the rate of hydrolytic processes at the interface depending on the content of fillers is described by step functions. It is revealed that for the effective use of the studied disperse waste in composite materials and as adsorbents for the extraction of pollutants, dispersion media with the following ranges of the hydrogen index are required: for BH − pH>4.4; OH − pH>6.4; WF − pH>3.9; CF − pH>4.5. The results obtained make it possible to predict and control acid-base interfacial interactions, as well as reasonably approach the development of new effective technologies

Author Biographies

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate Professor

Department of General Chemistry

 

Artem Kariev, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of General Chemistry

Vladimir Andronov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Anna Cherkashina, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Plastics and Biological Active Polymer

Vladimir Lebedev, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Plastics and Biological Active Polymer

Tetiana Shkolnikova, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General and Inorganic Chemistry

Oleksii Burlutskyi, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD

Department of Mechanics and Machine Design

Anatoliy Kosse, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire Prevention in Settlements

Yuriy Lutsenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire Prevention in Settlements

Dayana Yavors'ka, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Department of Ecological Safety and Environmental Education

References

  1. Zini, E., Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32 (12), 1905–1915. doi: https://doi.org/10.1002/pc.21224
  2. Petchwattana, N., Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 10 (1), 110–117. doi: https://doi.org/10.1016/s1672-6529(13)60205-x
  3. Sadritdinov, A. R., Lazdin, R. Y., Zakharova, E. M., Shurshina, A. S., Zakharov, V. P., Kulish, E. I. (2018). Ways to improve physico-mechanical properties of polymer composites on the basis of secondary polypropylene and natural extenders. Letters on Materials, 8 (4), 406–409. doi: https://doi.org/10.22226/2410-3535-2018-4-406-409
  4. Vaickelionis, G., Valančienė, V. (2016). Lightweight Concrete with an Agricultural Waste – Buckwheat Husk. Materials Science, 22 (1), 98–104. doi: https://doi.org/10.5755/j01.ms.22.1.8662
  5. Andrzejewski, J., Barczewski, M., Szostak, M. (2019). Injection Molding of Highly Filled Polypropylene-based Biocomposites. Buckwheat Husk and Wood Flour Filler: A Comparison of Agricultural and Wood Industry Waste Utilization. Polymers, 11 (11), 1881. doi: https://doi.org/10.3390/polym11111881
  6. Moreira, A. A., Mali, S., Yamashita, F., Bilck, A. P., de Paula, M. T., Merci, A., Oliveira, A. L. M. de. (2018). Biodegradable plastic designed to improve the soil quality and microbiological activity. Polymer Degradation and Stability, 158, 52–63. doi: https://doi.org/10.1016/j.polymdegradstab.2018.10.023
  7. Battegazzore, D., Noori, A., Frache, A. (2018). Natural wastes as particle filler for poly(lactic acid)-based composites. Journal of Composite Materials, 53 (6), 783–797. doi: https://doi.org/10.1177/0021998318791316
  8. Zaaba, N. F., Ismail, H. (2019). Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 30 (1), 81–99. doi: https://doi.org/10.21315/jps2019.30.s1.5
  9. Danchenco, Y. M., Karev, A. I., Lebedev, V. V., Zavinsky, S. I., Troshin, O. G. (2017). Creation of environmentally safe materials and products based on secondary polyolefins and organic disperse fillers. Intehrovani tekhnolohiyi ta enerhozberezhennia, 4, 94–97.
  10. Kariev, A. I., Danchenko, Yu. M., Yavorska, D. G., Lebedev, V. V., Troshin, O. G., Zavinsky, S. I. (2017). Acid-basic properties of the surface of organic fillers for polymer composites. Bulletin of National Technical University «KhPI». Series: Innovation researches in students’ scientific work, 41 (1263), 93–97.
  11. Lim, L. A., Makeich, D. A., Prishchenko, N. A., Zabolotnaya, A. M., Reutov, V. A., Kovaleva, E. V. (2015). Poluchenie lignotsellyuloznyh polimernyh kompozitov na osnove grechnevoy sheluhi i polietilena. Mezhdunarodniy zhurnal prikladnyh i eksperimental'nyh issledovaniy, 6, 514.
  12. Reutov, V. A., Lim, L. A., Zabolotnaya, A. M., Prishchenko, N. A., Anufriev, A. V., Pustovalov, E. V. (2016). Vliyanie sostava napolnitelya na svoystva lignotsellyuloznogo polimernogo kompozitsionnogo materiala. Sb. materialov Vtorogo mezhdistsiplinarnogo molodezhnogo nauchnogo foruma s mezhdunarodnym uchastiem «Novye materialy». Moscow: Interkontaktnauka, 69–71.
  13. Shkuro, A. E., Gluhih, V. V., Muhin, N. M. (2016). Poluchenie i izuchenie svoystv drevesno-polimernyh kompozitov s napolnitelyami iz othodov rastitel'nogo proishozhdeniya. Lesnoy vestnik, 20 (3), 101–105.
  14. Yan, L., Chouw, N., Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296–317. doi: https://doi.org/10.1016/j.compositesb.2013.08.014
  15. Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T., Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33 (3), 747–755. doi: https://doi.org/10.1016/j.indcrop.2011.01.017
  16. Binhussain, M. A., El-Tonsy, M. M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47, 1431–1435. doi: https://doi.org/10.1016/j.conbuildmat.2013.06.031
  17. Kengkhetkit, N., Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials & Design, 55, 292–299. doi: https://doi.org/10.1016/j.matdes.2013.10.005
  18. Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 20–26. doi: https://doi.org/10.15587/1729-4061.2017.111350
  19. Danchenko, Y., Andronov, V., Teslenko, M., Permiakov, V., Rybka, E., Meleshchenko, R., Kosse, A. (2018). Study of the free surface energy of epoxy composites using an automated measurement system. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 9–17. doi: https://doi.org/10.15587/1729-4061.2018.120998
  20. Danchenko, Y., Kachomanova, M., Barabash, Y. (2018). The Acid-Base Interaction Role in the Processes of the Filled Diane Epoxy Resins Structuring. Chemistry & Chemical Technology, 12 (2), 188–195. doi: https://doi.org/10.23939/chcht12.02.188
  21. Danchenko, Y. M., Popov, Y. V., Barabash, E. S. (2016). Influence of acid-base properties of the surface of polymineral fillers on the structure and characteristics of epoxy composites. Voprosy Khimii I Khimicheskoi Tekhnologii, 3 (107), 53–60.
  22. Zemnuhova, L. A., Tomshich, S. V., Shkorina, E. D., Klykov, A. G. (2014). Polisaharidy iz othodov proizvodstva grechihi. Zhurnal prikladnoy himii, 77 (7), 1192–1196.
  23. Zemnuhova, L. A., Makarenko, N. V., Tishchenko, L. Ya., Kovaleva, E. V. (2009). Issledovanie aminokislotnogo sostava v othodah proizvodstva risa, grechihi i podsolnechnika. Himiya rastitel'nogo syr'ya, 3, 147–149.
  24. Zemnuhova, L. A., Budaeva, V. V., Fedorishcheva, G. A., Kaydalova, T. A., Kurilenko, L. N., Shkorina, E. D., Il'yasov, S. G. (2009). Neorganicheskie komponenty solomy i sheluhi ovsa. Himiya rastitel'nogo syr'ya, 1, 147–152.
  25. Zemnuhova, L. A., Shkorina, E. D., Fedorishcheva, G. A. (2005). Issledovanie neorganicheskih komponentov sheluhi i solomy grechihi. Zhurnal prikladnoy himii, 78 (2), 329–333.
  26. Mitrofanov, R. Yu., Zolotuhin, V. N., Budaeva, V. V. (2010). Izuchenie himicheskogo sostava vodnogo ekstrakta solomy ovsa (AVENA SATIVA L.) i issledovanie ego rostoreguliruyushchih svoystv. Polzunovskiy vestnik, 4, 174–179.
  27. Zabolotnaya, A. M., Lim, L. A., Reutov, V. A., Anufriev, A. V., Rudenko, A. A., Yarygin, D. V., Hrebtov, A. A. (2015). Nekotorye aspekty kompleksnoy tehnologii pererabotki luzgi grechihi. Vestnik Yugorskogo gosudarstvennogo universiteta, 2 (37), 99–101.
  28. Nakamura, Y., Ono, Y., Saito, T., Isogai, A. (2019). Characterization of cellulose microfibrils, cellulose molecules, and hemicelluloses in buckwheat and rice husks. Cellulose, 26 (11), 6529–6541. doi: https://doi.org/10.1007/s10570-019-02560-4
  29. Franco-Marquès, E., Méndez, J. A., Pèlach, M. A., Vilaseca, F., Bayer, J., Mutjé, P. (2011). Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 166 (3), 1170–1178. doi: https://doi.org/10.1016/j.cej.2010.12.031
  30. Vurasko, A. V., Driker, B. N., Mertin, E. V., Bliznyakova, E. I., Nikoforov, A. F., Stoyanov, O. V. (2012). Issledovanie svoystv polimernyh materialov iz solomy i sheluhi ovsa. Vestnik Kazanskogo tehnologicheskogo universiteta, 15 (2), 155–157.
  31. Vurasko, A. V., Driker, B. N., Mertin, E. V., Sivakov, V. P., Nikiforov, A. F., Maslakova, T. I., Bliznyakova, E. I. (2012). Poluchenie i primenenie polimerov iz nedrevesnogo rastitel'nogo syr'ya. Vestnik Kazanskogo tehnologicheskogo universiteta, 15 (6), 128–132.
  32. Yamansarova, E. T., Gromyko, N. V., Abdullin, M. I., Kukovinets, O. S., Zvorygina, O. B. (2016). The study of adsorption properties of materials on the base of vegetable raw materials with organic and inorganic impurites. Vestnik Bashkirskogo universiteta, 21 (1), 73–77.
  33. Ivleva, A. R., Kanarskaya, Z. A., Gematdinova, V. M. (2016). Adsorbtsionnye svoystva pishchevoy kletchatki, poluchennoy iz vtorichnyh resursov pererabotki zernovyh kul'tur. Vestnik tehnologicheskogo universiteta, 19 (16), 118–120.
  34. Melnyk, L., Bessarab, O., Matko, S., Malovanyy, M. (2015). Adsorption of Heavy Metals Ions from Liquid Media by Palygorskite. Chemistry & Chemical Technology, 9 (4), 467–470. doi: https://doi.org/10.23939/chcht09.04.467
  35. Tomczak, E., Kamiński, W., Szczerkowska, D. (2013). Fractional Derivatives for Description of Sorption Kinetics in the Plant Sorbent - Metal Ions System. Ecological Chemistry and Engineering S, 20 (3), 499–506. doi: https://doi.org/10.2478/eces-2013-0037
  36. Chen, J., Yang, P., Song, D., Yang, S., Zhou, L., Han, L., Lai, B. (2013). Biosorption of Cr(VI) by carbonized Eupatorium adenophorum and Buckwheat straw: thermodynamics and mechanism. Frontiers of Environmental Science & Engineering, 8 (6), 960–966. doi: https://doi.org/10.1007/s11783-013-0612-2
  37. Ikonnikova, K. V., Ikonnikova, L. F., Minakova, T. S., Sarkisov, Yu. S. (2011). Teoriya i praktika rN-metricheskogo opredeleniya kislotno-osnovnyh svoystv poverhnosti tverdyh tel. Tomsk: Izd-vo Tomsk. politehn. un-ta, 85.
  38. Ly Thi Ien, Hohlov, V. Yu., Selemenev, V. F., Bel'chinskaya, L. I. (2011). Kinetika i sorbtsionnoe ravnovesie ionov ammoniya na prirodnom i kislotnoaktivirovannom alyumosilikatnom sorbente M45K20. Sorbtsionnye i hromatograficheskie protsessy, 11 (3), 382–390.

Downloads

Published

2020-02-29

How to Cite

Danchenko, Y., Kariev, A., Andronov, V., Cherkashina, A., Lebedev, V., Shkolnikova, T., Burlutskyi, O., Kosse, A., Lutsenko, Y., & Yavors’ka, D. (2020). A research of chemical nature and surface properties of plant disperse fillers. Eastern-European Journal of Enterprise Technologies, 1(6 (103), 32–41. https://doi.org/10.15587/1729-4061.2020.193383

Issue

Section

Technology organic and inorganic substances