Patterns of influence exerted by the side walls of a vibratory sieve on the motion of a loose mixture flow

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.208640

Keywords:

influence of side walls, mixture flow motion, distance between walls, specific loading of sieve

Abstract

The influence of the side walls of a vibratory sieve on the motion of a loose mixture flow has been investigated. The regularities have been established of the flow motion parameters on the walls’ height, the resistance of their surfaces, the length and distance between them. The condition has been defined for the occurrence, degree, character, as well as the region of the side walls’ influence on the mixture motion over the entire area of a sieve.

Increasing the height of the walls, the length and resistance of their surfaces increases the surface density and reduces the longitudinal velocity of a mixture near the near-wall region, causing the occurrence of the transverse velocity component and the uneven distribution of the specific load of the sieve. For the wall’s steady parameters, there is a threshold of distance between them, at which the near-wall regions of uneven loading begin to interact with each other, thereby enhancing their influence on the flow. There occur the under-loaded and over-loaded sites in the sieve that differ in the magnitude of deviations and area. The uneven loading area reaches 83 % of the sieve area while the magnitude of deviations in the specific loading is 26 %.

A condition of the influence exerted by the side walls on a flow is exceeding the minimum values of the parameters: a wall height, h>4·10–3 m; the resistance of a wall surface, Cz>2 kg/m2·s; a wall length, l>0.5 m. The side walls’ influence leads to the formation of a near-wall region of the sieve’s under-loaded and over-loaded sites, whose deviations and area are the same. The magnitude of the wall’s region of influence increases in proportion to the sieve length and acquires the shape of a rectangular triangle.

To reduce the influence of the side walls, it is necessary to reduce the resistance of their surfaces, the sieve length, and to increase its width, to avoid the threshold distance between the walls and a simultaneous growth of their parameters. The patterns in the side walls’ influence underlie the improvement of vibratory-sieve separators and the substantiation of their operation modes

Author Biographies

Mykhailo Piven, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61022

PhD, Associate Professor

Department of Physics and Theoretical Mechanics

Aleksandr Spolnik, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61022

Doctor of Physical and Mathematical Sciences, Professor

Department of Physics and Theoretical Mechanics

Tatiana Sychova, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61022

PhD, Associate Professor

Department of Higher Mathematics

Alona Piven, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61022

PhD, Senior Lecturer

Department of Organization of Production, Business and Management

References

  1. Lesin, Yu. V., Markov, S. O., Tyulenev, M. A. (2002). Vliyanie granichnogo effekta na fiziko-strukturnye harakteristiki razdel'nozernistoy sredy. Gornyy informatsionno-analiticheskiy byulleten', 9, 213. Available at: https://cyberleninka.ru/article/n/vliyanie-granichnogo-effekta-na-fiziko-strukturnye-harakteristiki-razdelnozernistoy-sredy
  2. Sizikov, V. S. (2017). Mathematical modeling of vibrational displacement of granular media by two transportation tool walls oscillating in antiphase (Part 1). Vestnik grazhdanskih inzhenerov, 1 (60), 214–220. Available at: http://vestnik.spbgasu.ru/sites/files/ru/articles/60/214-220.pdf
  3. Bessonova, M., Ponomareva, M., Yakutenok, V. (2019). Numerical solution of polymer melt flow problem in a single screw extruder. Himičeskaâ Fizika i Mezoskopiâ, 21 (2), 198–217. doi: https://doi.org/10.15350/17270529.2019.2.22
  4. Ostrikov, A. N., Abramov, O. V. (1999). Matematicheskaya model' protsessa ekstruzii pri neizotermicheskom techenii vyazkoy sredy v odnoshnekovyh ekstruderah. Izvestiya vysshih uchebnyh zavedeniy. Pishchevaya tehnologiya, 1 (248), 49–52. Available at: https://cyberleninka.ru/article/n/matematicheskaya-model-protsessa-ekstruzii-pri-neizotermicheskom-techenii-vyazkoy-sredy-v-odnoshnekovyh-ekstruderah
  5. Loktionova, O. G. (2008). Dinamika i optimal'niy sintez parametrov vibrokipyashchego sloya sypuchey sredy. Izvestiya vysshih uchebnyh zavedeniy. Severo-Kavkazskiy region. Tehnicheskie nauki, 1, 8–10. Available at: https://cyberleninka.ru/article/n/dinamika-i-optimalnyy-sintez-parametrov-vibrokipyaschego-sloya-sypuchey-sredy
  6. Stannarius, R., Martinez, D. S., Börzsönyi, T., Bieberle, M., Barthel, F., Hampel, U. (2019). High-speed x-ray tomography of silo discharge. New Journal of Physics, 21 (11), 113054. doi: https://doi.org/10.1088/1367-2630/ab5893
  7. Chou, S. H., Sheng, L. T., Huang, W. J., Hsiau, S. S. (2020). Segregation pattern of binary-size mixtures in a double-walled rotating drum. Advanced Powder Technology, 31 (1), 94–103. doi: https://doi.org/10.1016/j.apt.2019.10.003
  8. Vodop'yanov, I. S., Nikitin, N. V., Chernyshenko, S. I. (2013). Snizhenie turbulentnogo soprotivleniya bokovymi kolebaniyami orebrennoy poverhnosti. Izvestiya Rossiyskoy akademii nauk. Mehanika zhidkosti i gaza, 4, 46–56.
  9. Asif, M., Haq, S. U., Islam, S., Khan, I., Tlili, I. (2018). Exact solution of non-Newtonian fluid motion between side walls. Results in Physics, 11, 534–539. doi: https://doi.org/10.1016/j.rinp.2018.09.023
  10. Fetecau, C., Vieru, D., Fetecau, C. (2011). Effect of side walls on the motion of a viscous fluid induced by an infinite plate that applies an oscillating shear stress to the fluid. Open Physics, 9 (3), 816–824. doi: https://doi.org/10.2478/s11534-010-0073-1
  11. Sultan Q., Nazar M. (2016). Flow of generalized Burgers' fluid between side walls induced by sawtooth pulses stress. Journal of Applied Fluid Mechanics, 9 (5), 2195–2204. doi: https://doi.org/10.18869/acadpub.jafm.68.236.24660
  12. Vasylkovskyi, O., Vasylkovska, K., Moroz, S., Sviren, M., Storozhyk, L. (2019). The influence of basic parameters of separating conveyor operation on grain cleaning quality. INMATEH Agricultural Engineering, 57 (1), 63–70. doi: https://doi.org/10.35633/inmateh_57_07
  13. Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2 (7 (80)), 63–69. doi: https://doi.org/10.15587/1729-4061.2016.65920
  14. Kharchenko, S., Kovalyshyn, S., Zavgorodniy, A., Kharchenko, F., Mikhaylov, Y. (2019). Effective sifting of flat seeds through sieve. INMATEH - Agricultural Engineering, 58 (2), 17–26. Available at: https://inmateh.eu/api/uploads/eab04a49-470f-4c7e-87ef-1577a8abf4e8.pdf
  15. Li, Z., Tong, X., Xia, H., Yu, L. (2016). A study of particles looseness in screening process of a linear vibrating screen. Journal of Vibroengineering, 18 (2), 671–681. Available at: https://www.jvejournals.com/article/16563
  16. Akhmadiev, F. G., Gizzyatov, R. F., Kiyamov, K. G. (2013). Mathematical modeling of thin-layer separation of granular materials on sieve classifiers. Theoretical Foundations of Chemical Engineering, 47 (3), 254–261. doi: https://doi.org/10.1134/s0040579513030019
  17. Piven, M., Volokh, V., Piven, A., Kharchenko, S. (2018). Research into the process of loading the surface of a vibrosieve when a loose mixture is fed unevenly. Eastern-European Journal of Enterprise Technologies, 6 (1 (96)), 62–70. doi: https://doi.org/10.15587/1729-4061.2018.149739
  18. Akhmadiev, G. F., Gizzyato, R. F., Nazipov, I. T. (2017). Hydrogasdynamics and Kinetics of Separation of Disperse Media on Sieve Classifiers. Journal of Engineering Physics and Thermophysics, 90 (5), 1077–1086. doi: https://doi.org/10.1007/s10891-017-1659-x
  19. Hua, L., Jinshuang, W., Jianbo, Y., Wenqing, Y., Zhiming, W. (2017). Analysis of threshed rice mixture separation through vibration screen using discrete element method. International Journal of Agricultural and Biological Engineering, 10 (6), 231–239. doi: https://doi.org/10.25165/j.ijabe.20171006.2910
  20. Tishchenko, L. N., Ol'shanskiy, V. P. (2008). Resheniya uproshchennyh uravneniy gidrodinamiki pri modelirovanii dvizheniya zernovoy smesi po naklonnomu ploskomu reshetu. Suchasni napriamky tekhnolohiyi ta mekhanizatsiyi protsesiv pererobnykh i kharchovykh vyrobnytstv. Visnyk KhNTUSH, 74, 306–312.
  21. Piven, M. (2016). Planned Motion Equations of Free-running Grain Mixture Flow. TEKA. Commission of motorization and energetics in agriculture, 16 (4), 63–72. Available at: https://journals.pan.pl/Content/108402/PDF/9_Piven.pdf

Downloads

Published

2020-08-31

How to Cite

Piven, M., Spolnik, A., Sychova, T., & Piven, A. (2020). Patterns of influence exerted by the side walls of a vibratory sieve on the motion of a loose mixture flow. Eastern-European Journal of Enterprise Technologies, 4(1 (106), 29–38. https://doi.org/10.15587/1729-4061.2020.208640

Issue

Section

Engineering technological systems