Development of a geometric model of a new method for delivering extinguishing substances to a distant fire zone

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209382

Keywords:

geometric modeling, dumbbell-shaped container, Lagrange equation of the second kind, rotational-translational motion of the container

Abstract

A geometric model of a new method of delivering fire-extinguishing substances to a fire zone located at a considerable distance was offered. The idea of delivery is based on the mechanical action of throwing. To this end, a substance (e.g. extinguishing powder) is loaded in a hard shell made as a special container. After delivery by means of a launcher to a fire zone, the container has to release the substance which will promote fire extinguishing.

The known method of remote delivery of extinguishing substances uses a pneumatic gun with a cylindrical container. During delivery, the cylinder must rotate around its axis to ensure flight stability. The cylinder is rotated by a special turbine when passing through the gun barrel. There are difficulties in regulating the distribution of compressed air flows during the turbine operation. In addition, the tightness of the pneumatic part of the gun should be monitored.

The new delivery method uses a container in a form of two spaced loads similar to a sports dumbbell. The dumbbell motion is initiated by simultaneous action of explosion-generated pulses directed at each of its loads in a pre-calculated manner. This results in the rotational motion of the container. To describe the dynamics of the dumbbell motion, a Lagrangian was defined and a system of Lagrange differential equations of the second kind was set up and solved. Examples of modeling trajectories of the centers of masses of the dumbbell loads taking into account air resistance were given.

The proposed method is planned to be a basis of a new fire extinguishing technology. This is evidenced by the new scheme of launching the dumbbell by means of explosion-generated pulses of charges of two pyro cartridges. The obtained results make it possible to estimate magnitudes of explosion-generated pulses necessary for throwing and corresponding distances of the dumbbell delivery

Author Biographies

Leonid Kutsenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Engineering and Rescue Machinery

Volodymyr Vanin, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Descriptive Geometry, Engineering and Computer Graphics

Andrii Naidysh, Bogdan Khmelnitsky Melitopol State Pedagogical University Hetmanska str., 20, Melitopol, Ukraine, 72300

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mathematics and Information Technology

Sergii Nazarenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Engineering and Rescue Machinery

Andrii Kalynovskyi, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Engineering and Rescue Machinery

Andrii Cherniavskyi, National Aerospace University Kharkiv Aviation Institute Chkalova str., 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor, Head of Department

Department of Descriptive Geometry and Computer Modeling

Olga Shoman, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Geometrical Modeling and Computer Graphics

Victoria Semenova-Kulish, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Descriptive Geometry and Computer Graphics

Oleksandr Polivanov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Adjunct

Department of Engineering and Rescue Machinery

Elizaveta Sivak, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Geometric Modeling and Computer Graphics

References

  1. Zahmatov, V. D. (2011). Perspective modern development of fire-fighting technique and novelties for forest fire-fighting. Pozharovzryvobezopasnost', 20 (2), 47–59.
  2. Artsibashev, E. S., Gusev, V. G. (2002). Aviatsionnye sposoby bor'by s lesnymi pozharami v usloviyah radiatsionnogo zagryazneniya radionuklidami. Gomel': AN Belarusi, 190.
  3. Roponen, J. (2015). Simulating artillery fire in forest environment. Aalto University, 58.
  4. Dullum, O. S., Fulmer, K., Jenzen-Jones, N. R., Lincoln-Jones, C., Palacio, D. G.; Jenzen-Jones, N. R. (Ed.) (2017). Indirect Fire: A technical analysis of the employment, accuracy, and effects of indirect-fire artillery weapons. Perth: Armament Research Services (ARES), 93.
  5. Balanyuk, V. M. (2016). Firefighting series of shock waves. Problemy pozharnoy bezopasnosti, 40, 26–34.
  6. Govalenkov, S. V., Dubinin, D. P. (2009). Primenenie vzryvnogo sposoba dlya bor'by s lesnymi pozharami. Systemy obrobky informatsiyi, 2 (76), 135–139.
  7. Modernizovana pozhezhna mashyna HPM-54-01. Available at: https://www.tank.lviv.ua/ua/productions/details/gpm5401
  8. Kovalev, O. O., Kalinovsky, A. Y., Polivanov, O. G. (2019). Development of individual aspects of container method of fire extinguishing. Fire Safety, 34, 35–42. doi: https://doi.org/10.32447/10.32447/20786662.34.2019.06
  9. Larin, A., Krivоshei, B., Polivanov, A. (2018). Analysis of the available substances use and methods of their delivery for fire expansion. Municipal Economy of Cities, 7 (146), 146–150. doi: https://doi.org/10.33042/2522-1809-2018-7-146-146-150
  10. Kovalenko, R., Kalynovskyi, A., Nazarenko, S., Kryvoshei, B., Grinchenko, E., Demydov, Z. et. al. (2019). Development of a method of completing emergency rescue units with emergency vehicles. Eastern-European Journal of Enterprise Technologies, 4 (3 (100)), 54–62. doi: https://doi.org/10.15587/1729-4061.2019.175110
  11. Larin, O., Morozov, O., Nazarenko, S., Chernobay, G., Kalynovskyi, A., Kovalenko, R. et. al. (2019). Determining mechanical properties of a pressure fire hose the type of «T». Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 63–70. doi: https://doi.org/10.15587/1729-4061.2019.184645
  12. Kalynovsky, A. Ya., Kovalenko, R. I. (2017). Statistical Study of the Nature of Hazardous Events Which are in the Kharkov City. Komunalne hospodarstvo mist, 135, 159–166.
  13. Khilko, Yu., Meleschenko, R. (2017). Determination of parameters of fire extinguishing efficiency of the troop landing of powder-like mixtures from containers. Problemy pozharnoy bezopasnosti, 41, 196–200.
  14. Sakun, O. V. (2018). Dynamic loads in the gas-detonation device for shooting of containers with extinguishing substances. Problemy nadzvychainykh sytuatsiy, 27, 93–103.
  15. TSarev, A. M., ZHuykov, D. A. (2007). Mekhanika deystviya perspektivnyh ognetushaschih sostavov v ustanovkah pozharotusheniya stvolovogo tipa konteynernoy dostavki metodom metaniya. Izvestiya Samarskogo nauchnogo tsentra RAN, 2, 458–464.
  16. Tsarev, A. M., Zhujkov, D. A. (2007). Questions of external ballistics of flight of the container for delivery of fire-extinguishing stuffs in containers by method of the throwing with application of installations of gun-tube type. Izvestiya Samarskogo nauchnogo tsentra RAN, 9 (3), 786–795.
  17. Karishin, A. V., Tsarev, A. M., Zhuykov, D. A., Yakovlev, G. G. (2007). Reshenie problemy effektivnosti tusheniya pozharov s primeneniem stvolovyh ustanovok konteynernoy dostavki ognetushaschih veschestv. Pozharovzryvobezopasnost', 16 (3), 72–82.
  18. Kutsenko, L., Kalynovskyi, A., Polivanov, O. (2020). Geometric modeling method throwing fire fighting. Applied geometry and engineering graphics, 98, 94–103. doi: https://doi.org/10.32347/0131-579x.2020.98.94-103
  19. Babaiev, O. A., Kryshtal, V. F. (2015). Teoretychna mekhanika-3. Zahalni teoremy dynamiky ta elementy analitychnoi mekhaniky. K.: NTUU “KPI”, 82.
  20. Egorov, A. D., Potapova, I. A. (2020). Teorema Keniga: Prostoy primer. doi: http://doi.org/10.13140/RG.2.2.36728.39684
  21. Siano, D. B. (2013). Trebuchet Mechanics. Available at: http://www.algobeautytreb.com/trebmath356.pdf
  22. Mosher, A. (2009). A Mathematical Model for a Trebuchet. Available at: https://classes.engineering.wustl.edu/2009/fall/ese251/presentations/(AAM_13)Trebuchet.pdf
  23. Rutan, S., Wieczorec, B. (2005). Modern Siege Weapons: Mechanics of the Trebuchet. Available at: https://mse.redwoods.edu/darnold/math55/DEProj/sp05/bshawn/presentation.pdf
  24. Balazs, G. (2016). Mobile launching trebuchet for UAVS. 30-th Congress of the International Council of the Aeronautical Sciences. Daejeon, 1–7.
  25. Balazs, G. (2015). UAV innovativ inditasa – korszeru megoldas a kozepkorbol. Repulastudomanyi kozlemenyek, 3, 37–50. Available at: http://www.repulestudomany.hu/folyoirat/2015_3/2015-3-03-0229_Gati_Balazs.pdf
  26. Kutsenko, L., Semkiv, O., Kalynovskyi, A., Piksasov, M., Suharkova, E. (2017). Geometric model of mobile device to launch unmanned aerial vehicles. ScienceRise, 12 (1), 57–62. doi: https://doi.org/10.15587/2313-8416.2017.117920
  27. Bell, G. (2015). What is the ‘best’trebuchet? Available at: http://grahambell.com.au/wpcontent/uploads/2017/11/GBellTrebuchetPaper2.pdf
  28. Higginbotham, S. (2014). Trebuchet Analysis. Available at: https://dokumen.tips/download/link/analysis-of-trebuchet
  29. Constans, E. (2017). A Lagrangian Simulation of the Floating-Arm Trebuchet. The College Mathematics Journal, 48 (3), 179–187. doi: https://doi.org/10.4169/college.math.j.48.3.179
  30. How to Simulate a Trebuchet Part 3: The Floating-Arm Trebuchet. Available at: http://www.benchtophybrid.com/How_to_Simulate_a_Trebuchet_Part3.pdf
  31. Kutsenko, L., Semkiv, O., Zapolskiy, L. (2020). Model disclosures of a four-link rod structure with a moving reference point. Modern problems of modeling, 17, 47–53. doi: https://doi.org/10.33842/2313-125x/2019/17/47/53
  32. Kutsenko, L. M., Zapolskyi, L. L. (2018). Heometrychne modeliuvannia peremishchennia v nevahomosti chotyrylankovoho maiatnyka z rukhomoiu tochkoiu kriplennia. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 3 (66), 153–158.
  33. Mass matrix. Rotating dumbbell. Available at: https://en.wikipedia.org/wiki/Mass_matrix
  34. Rostamian, R. (2018). A Guided Tour of Analytical Mechanics with animations in MAPLE. Department of Mathematics and Statistics UMBC, 111.
  35. Rostamian, R. (2018). MATH 490: Special Topics in Mathematics Analytical Mechanics. Fall 2018 Course information. Available at: https://userpages.umbc.edu/~rostamia/2018-09-math490/
  36. Dvizhenie tela, broshennogo pod uglom k gorizontu. Zakony podobiya. Available at: https://lawbooks.news/informatika_961/dvijenie-tela-broshennogo-pod-uglom-gorizontu-69582.html
  37. Dvizhenie tela v pole tyazhesti s uchetom soprotivleniya vozduha. Available at: https://glebgrenkin.blogspot.com/2014/03/blog-post.html
  38. Buyanova, L. V., Zhuravlev, E. I. (2015). Metodika proektirovaniya pirotekhnicheskih ustroystv sistem otdeleniya. Inzhenerniy vestnik, 7, 56–62.
  39. Pirotekhnicheskoe ustroystvo dlya sozdaniya udarnyh vozdeystviy. Available at: https://findpatent.ru/patent/239/2394217.html
  40. Kutsenko, L. M., Kalynovskyi, A. Ya., Polivanov, O. H. (2020). Animatsiyni iliustratsii do statti "Kompiuterne modeliuvannia novoi tekhnolohiyi viddalenoi dostavky zasobiv hasinnia pozhezh". Available at: http://repositsc.nuczu.edu.ua/handle/123456789/10860

Downloads

Published

2020-08-31

How to Cite

Kutsenko, L., Vanin, V., Naidysh, A., Nazarenko, S., Kalynovskyi, A., Cherniavskyi, A., Shoman, O., Semenova-Kulish, V., Polivanov, O., & Sivak, E. (2020). Development of a geometric model of a new method for delivering extinguishing substances to a distant fire zone. Eastern-European Journal of Enterprise Technologies, 4(7 (106), 88–102. https://doi.org/10.15587/1729-4061.2020.209382

Issue

Section

Applied mechanics