Development of the combined method to de-orbit space objects using an electric rocket propulsion system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210378

Keywords:

large-sized space debris, combined de-orbiting, electric rocket propulsion system, low orbits

Abstract

A method has been developed for the combined de-orbiting of large-size objects of space debris from low-Earth orbits using an electro-rocket propulsion system as an active de-orbiting means.

A principal de-orbiting technique has been devised, which takes into consideration the patterns of using an electric rocket propulsion system in comparison with the sustainer rocket propulsion system.

A procedure for determining the parameters of the de-orbiting scheme has been worked out, such as the minimum total speed and the time of the start of the de-orbiting process, which ensures its achievement. The proposed procedure takes into consideration the impact exerted on the process of the de-orbiting by the ballistic factor of the object, the height of the initial orbit, and the phase of solar activity at the time of the de-orbiting onset. The actual time constraints on battery discharge have been accounted for, as well as on battery charge duration, and active operation of the control system.

The process of de-orbiting a large-size object of space debris has been simulated by using the combined method involving an electro-rocket propulsion system. The impact of the initial orbital altitude, ballistic coefficient, and the phase of solar activity on the energy costs of the de-orbiting process have been investigated. The dependences have been determined of the optimal values of a solar activity phase, in terms of energy costs, at the moment of the de-orbiting onset, and the total velocity, required to ensure the de-orbiting, on the altitude of the initial orbit and ballistic factor. These dependences are of practical interest in the tasks of designing the means of the combined de-orbiting involving an electric rocket propulsion system. The dependences of particular derivatives from the increment of a velocity pulse to the gain in the ballistic factor on the altitude of the initial orbit have been established. The use of these derivatives is also of practical interest to assess the effect of unfolding an aerodynamic sailing unit

Author Biographies

Aleksandr Golubek, Yuzhnoye Design Office Kryvorizhska str., 3, Dnipro, Ukraine, 49008

PhD, Associate Professor, Lead Software Engineer

Department of Design and Theoretical Works

Mykola Dron’, Oles Нonchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Design and Construction

Ludmila Dubovik, Oles Нonchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

Senior Researcher

Institute of Energy

Andrii Dreus, Oles Нonchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Associate Professor

Department of Fluid Mechanics and Energy and Mass Transfer

Oleksii Kulyk, The National Aerospace Educational Center of Youth Named After А. М. Makarov Gagarina ave., 26, Dnipro, Ukraine, 409005

PhD, Associate Professor, General Director

Petro Khorolskiy, Yuzhnoye Design Office Kryvorizhska str., 3, Dnipro, Ukraine, 49008

PhD, Head of Sector

Department of Design and Theoretical Works

References

  1. Liou, J.-C., Kieffer, M., Drew, A., Sweet, A. (2020). The 2019 U.S. Government Orbital Debris Mitigation Standard Practices. Orbital Debris Quarterly News, 24 (1), 4–8. Available at: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv24i1.pdf
  2. Bastida Virgili, B., Dolado, J. C., Lewis, H. G., Radtke, J., Krag, H., Revelin, B. et. al. (2016). Risk to space sustainability from large constellations of satellites. Acta Astronautica, 126, 154–162. doi: https://doi.org/10.1016/j.actaastro.2016.03.034
  3. Liou, J.-C., Johnson, N. L. (2009). A sensitivity study of the effectiveness of active debris removal in LEO. Acta Astronautica, 64 (2-3), 236–243. doi: https://doi.org/10.1016/j.actaastro.2008.07.009
  4. Drmola, J., Hubik, T. (2018). Kessler Syndrome: System Dynamics Model. Space Policy, 44-45, 29–39. doi: https://doi.org/10.1016/j.spacepol.2018.03.003
  5. Kessler, D., Johnson, N., Liou, J.-C., Matney, M. (2010). The Kessler Syndrome: Implications to Future Space operations. Guidance and Control. 33rd Annual AAS Guidance And Control Conference. Available at: https://pdfs.semanticscholar.org/2276/55e022441d1379dfdc395173ed2e776d54ee.pdf?_ga=2.116661766.127572570.1598000438-1908018850.1550590803
  6. Dron, N. M., Horolsky, P. G., Dubovik, L. G. (2014). Ways of reduction of technogenic pollution of the near-earth space. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 3, 125–130.
  7. Alpatov, A. P. (2016). Dinamika kosmicheskih letatel'nyh apparatov. Kyiv: Naukova dumka, 488.
  8. Levin, E., Pearson, J., Carroll, J. (2012). Wholesale debris removal from LEO. Acta Astronautica, 73, 100–108. doi: https://doi.org/10.1016/j.actaastro.2011.11.014
  9. Mark, C. P., Kamath, S. (2019). Review of Active Space Debris Removal Methods. Space Policy, 47, 194–206. doi: https://doi.org/10.1016/j.spacepol.2018.12.005
  10. Shan, M., Guo, J., Gill, E. (2016). Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 80, 18–32. doi: https://doi.org/10.1016/j.paerosci.2015.11.001
  11. Sánchez-Arriaga, G., Sanmartín, J. R., Lorenzini, E. C. (2017). Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission. Acta Astronautica, 138, 536–542. doi: https://doi.org/10.1016/j.actaastro.2016.12.004
  12. Dron’, M., Golubek, A., Dubovik, L., Dreus, A., Heti, K. (2019). Analysis of ballistic aspects in the combined method for removing space objects from the near­Earth orbits. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 49–54. doi: https://doi.org/10.15587/1729-4061.2019.161778
  13. Baranov, A. A., Grishko, D. A., Khukhrina, О. I., Chen, D. (2020). Optimal transfer schemes between space debris objects in geostationary orbit. Acta Astronautica, 169, 23–31. doi: https://doi.org/10.1016/j.actaastro.2020.01.001
  14. Dron', M., Khorolskyy, P., Dubovik, L., Hit'ko, A., Velykyi, I. (2012). Estimation of capacity of debris collector with electric propulsion system creation taking in a count energy response of the existing launch vehicles. Proceedings of the 63th International Astronautical Congress, 2694–2697.
  15. DeLuca, L. T., Lavagna, M., Maggi, F., Tadini, P., Pardini, C., Anselmo, L. et. al. (2014). Large Debris Removal Mission in LEO based on Hybrid Propulsion. Aerotecnica Missili & Spazio, 93 (1-2), 51–58. doi: https://doi.org/10.1007/bf03404676
  16. Yemets, V., Dron’, M., Pashkov, A. (2020). Autophage Engines: Method to Preset Gravity Load of Solid Rockets. Journal of Spacecraft and Rockets, 57 (2), 309–318. doi: https://doi.org/10.2514/1.a34597
  17. Yemets, M., Yemets, V., Harkness, P., Dron’, M., Worrall, K., Pashkov, A. et. al. (2018). Caseless throttleable solid motor for small spacecraft. 69th International Astronautical Congress. Bremen, 10924–10933.
  18. Yemets, V., Harkness, P., Dron’, M., Pashkov, A., Worrall, K., Middleton, M. (2018). Autophage Engines: Toward a Throttleable Solid Motor. Journal of Spacecraft and Rockets, 55 (4), 984–992. doi: https://doi.org/10.2514/1.a34153
  19. Yemets, V. V., Dron’, M. M., Kositsyna, O. S. (2019). Estimation of the possibilities for using the solid hydrocarbon fuels in autophage launch vehicle. Journal of Chemistry and Technologies, 27 (1), 58–64. doi: https://doi.org/10.15421/081906
  20. Dron, M., Dreus, A., Golubek, A., Abramovsky, Yev. (2018). Investigation of aerodynamics heating of space debris object at reentry to Earth atmosphere. 69th International Astronautical Congress. Bremen.
  21. Alpatov, A. P., Paliy, O. S., Skorik, О. D. (2017). The Development of Structural Design and the Selection of Design Parameters of Aerodynamic Systems for De-orbiting Upper-stage Rocket Launcher. Nauka Ta Innovacii, 13 (4), 33–45. doi: https://doi.org/10.15407/scin13.03.033
  22. Rasse, B., Damilano, P., Dupuy, C. (2014). Satellite Inflatable Deorbiting Equipment for LEO Spacecrafts. Journal of Space Safety Engineering, 1 (2), 75–83. doi: https://doi.org/10.1016/s2468-8967(16)30084-2
  23. Roberts, P. C. E., Harkness, P. G. (2007). Drag Sail for End-of-Life Disposal from Low Earth Orbit. Journal of Spacecraft and Rockets, 44 (6), 1195–1203. doi: https://doi.org/10.2514/1.28626
  24. Visagie, L., Lappas, V., Erb, S. (2015). Drag sails for space debris mitigation. Acta Astronautica, 109, 65–75. doi: https://doi.org/10.1016/j.actaastro.2014.12.013
  25. Lapkhanov, E., Khoroshylov, S. (2019). Development of the aeromagnetic space debris deorbiting system. Eastern-European Journal of Enterprise Technologies, 5 (5 (101)), 30–37. doi: https://doi.org/10.15587/1729-4061.2019.179382
  26. Alpatov, A., Khoroshylov, S., Lapkhanov, E. (2020). Synthesizing an algorithm to control the angular motion of spacecraft equipped with an aeromagnetic deorbiting system. Eastern-European Journal of Enterprise Technologies, 1 (5 (103)), 37–46. doi: https://doi.org/10.15587/1729-4061.2020.192813
  27. Kelly, P. W., Bevilacqua, R., Mazal, L., Erwin, R. S. (2018). TugSat: Removing Space Debris from Geostationary Orbits Using Solar Sails. Journal of Spacecraft and Rockets, 55 (2), 437–450. doi: https://doi.org/10.2514/1.a33872
  28. Lücking, C., Colombo, C., McInnes, C. R. (2012). A passive satellite deorbiting strategy for medium earth orbit using solar radiation pressure and the J2 effect. Acta Astronautica, 77, 197–206. doi: https://doi.org/10.1016/j.actaastro.2012.03.026
  29. Li, P., Zhong, R., Lu, S. (2019). Optimal control scheme of space tethered system for space debris deorbit. Acta Astronautica, 165, 355–364. doi: https://doi.org/10.1016/j.actaastro.2019.09.031
  30. Li, G., Zhu, Z. H., Ruel, S., Meguid, S. A. (2017). Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astronautica, 137, 320–333. doi: https://doi.org/10.1016/j.actaastro.2017.04.025
  31. Bombardelli, C., Pelaez, J. (2011). Ion Beam Shepherd for Contactless Space Debris Removal. Journal of Guidance, Control, and Dynamics, 34 (3), 916–920. doi: https://doi.org/10.2514/1.51832
  32. Alpatov, A., Khoroshylov, S., Bombardelli, C. (2018). Relative control of an ion beam shepherd satellite using the impulse compensation thruster. Acta Astronautica, 151, 543–554. doi: https://doi.org/10.1016/j.actaastro.2018.06.056
  33. Cichocki, F., Merino, M., Ahedo, E. (2018). Spacecraft-plasma-debris interaction in an ion beam shepherd mission. Acta Astronautica, 146, 216–227. doi: https://doi.org/10.1016/j.actaastro.2018.02.030
  34. Khoroshylov, S. (2019). Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronautica, 164, 254–261. doi: https://doi.org/10.1016/j.actaastro.2019.08.016
  35. Yang, Y., Klein, E., Sagnières, L. (2020). Tumbling object deorbiting using spaceborne laser engagement – A CubeSat case study. Advances in Space Research, 65 (7), 1742–1757. doi: https://doi.org/10.1016/j.asr.2020.01.002
  36. Inamori, T., Kawashima, R., Saisutjarit, P., Sako, N., Ohsaki, H. (2015). Magnetic plasma deorbit system for nano- and micro-satellites using magnetic torquer interference with space plasma in low Earth orbit. Acta Astronautica, 112, 192–199. doi: https://doi.org/10.1016/j.actaastro.2015.02.025
  37. Kirpichnikov, S. N., Ivanova, M. V. (2005). Minimum-fuel impulsive transfers between circular coplanar orbits. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mehanika. Astronomiya, 1, 79–86.

Downloads

Published

2020-08-31

How to Cite

Golubek, A., Dron’, M., Dubovik, L., Dreus, A., Kulyk, O., & Khorolskiy, P. (2020). Development of the combined method to de-orbit space objects using an electric rocket propulsion system. Eastern-European Journal of Enterprise Technologies, 4(5 (106), 78–87. https://doi.org/10.15587/1729-4061.2020.210378

Issue

Section

Applied physics