A study of light amplification and dispersion by surface tension on water droplet above taro (Colocasia Esculenta) leaf
DOI:
https://doi.org/10.15587/1729-4061.2020.211518Keywords:
taro leaf, hydrophobic, light dispersion, surface chemical reaction, white lightAbstract
Hydrophobic characteristics are widely used in the development of new materials, especially to be applied to the surface coating of materials. This involves amplification of the light exposure on the hydrophobic surface for energy-efficient buildings and photovoltaic energy harvesting systems. The paper discusses the role super-hydrophobic nature of light dispersion falling on the water droplet of the taro leaf surface. Camera and video modes were used to get infrared ray images shot at the water droplet, in dark and bright spaces, with variations in the angle of rays incidence and the volume of droplet. The result shows that the waxy layer surface of the taro leaf has the main structure of alkanes/alkyne with active phenol and aldehydes groups, that peak in 2,648/cm. These active groups bind the atoms (free) of the leaf surface when the leaf surface is in normal conditions. The presence of water bubbles on the surface of the taro leaf causes air to be trapped in the cavity of the lump, forms a silvery layer, resulting in chemical reactions with Mg and K atoms, and dehydrogenation of hydrocarbons. These reactions form metal oxides and hydrogen gas. When the bubble is hit by light, the dispersion tends to strengthen at the light angle greater than 40°, due to the silvery coating of magnesium and potassium oxides and the activity of hydrogen gas, that lead to stronger surface tension and the electron mobility and strengthening water molecules bonds. The activities of these products accelerate atomic movement that amplifies the light energy into white light. This study is expected to be a consideration for the new hydrophobic materials design. Applications for surface coating that can amplify light irradiated on the super-hydrophobic surface are promising for energy-efficient buildings and photovoltaic energy harvesting.
Supporting Agency
- This research is partly funded by the Directorate of Educators and Education personnel (DITJEN DIKTI) with a scholarship on domestic graduate education (BPP-DN)/BPPS with contract number 940/UN 10.14/KU/2012 through the Graduate program of Universitas Bra
References
- Lepore, E., Pugno, N. (2011). Superhydrophobic Polystyrene by Direct Copy of a Lotus Leaf. BioNanoScience, 1 (4), 136–143. doi: https://doi.org/10.1007/s12668-011-0017-2
- Poinern, G. E., Thi-Le, Fawcett, D. (2011). Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application. Nanotechnology, Science and Applications, 113. doi: https://doi.org/10.2147/nsa.s24834
- Barthlott, W., Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202 (1), 1–8. doi: https://doi.org/10.1007/s004250050096
- Bhushan, B., Chae Jung, Y. (2007). Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy, 107 (10-11), 1033–1041. doi: https://doi.org/10.1016/j.ultramic.2007.05.002
- Zhang, Y., Wu, H., Yu, X., Chen, F., Wu, J. (2012). Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties. Journal of Bionic Engineering, 9 (1), 84–90. doi: https://doi.org/10.1016/s1672-6529(11)60100-5
- Koch, K., Barthlott, W. (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1893), 1487–1509. doi: https://doi.org/10.1098/rsta.2009.0022
- Solga, A., Cerman, Z., Striffler, B. F., Spaeth, M., Barthlott, W. (2007). The dream of staying clean: Lotus and biomimetic surfaces. Bioinspiration & Biomimetics, 2 (4), S126–S134. doi: https://doi.org/10.1088/1748-3182/2/4/s02
- Singh, A., Suh, K.-Y. (2013). Biomimetic patterned surfaces for controllable friction in micro- and nanoscale devices. Micro and Nano Systems Letters, 1 (1), 6. doi: https://doi.org/10.1186/2213-9621-1-6
- Meng, L.-Y., Park, S.-J. (2014). Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Letters, 15 (2), 89–104. doi: https://doi.org/10.5714/cl.2014.15.2.089
- Subhash Latthe, S., Basavraj Gurav, A., Shridhar Maruti, C., Shrikant Vhatkar, R. (2012). Recent Progress in Preparation of Superhydrophobic Surfaces: A Review. Journal of Surface Engineered Materials and Advanced Technology, 02 (02), 76–94. doi: https://doi.org/10.4236/jsemat.2012.22014
- Pal, S. (2005). Molecular Dynamics Simulation of Water Near Structured Hydrophobic Surfaces. International University Bremen, 138.
- Law, K. (2018). Highly Wettable Slippery Surfaces: Self-cleaning Effect and Mechanism. Int. Journ. Wettability Sci. Technol., 1, 31–45.
- Kumar, M., Bhardwaj, R. (2020). Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-57410-2
- Negara, K., Wardana, I., Widhiyanuriyawan, D., Hamidi, N. (2018). Harvesting Energi Pada Permukaan Daun Colocasia Esculenta L. Dengan Water Droplet. Prosiding Konferensi Nasional Engineering Perhotelan IX, 189–194.
- Negara, K. M. T., Wardana, I. N. G., Widhiyanuriyawan, D., Hamidi, N. (2019). The Role of the Slope on Taro Leaf Surface to Produce Electrical Energy. IOP Conference Series: Materials Science and Engineering, 494, 012084. doi: https://doi.org/10.1088/1757-899x/494/1/012084
- E, J., Jin, Y., Deng, Y., Zuo, W., Zhao, X., Han, D. et. al. (2017). Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and Their Application on Superhydrophobic Surfaces: A Review. Advanced Materials Interfaces, 5 (1), 1701052. doi: https://doi.org/10.1002/admi.201701052
- Pathak, S. (2017). Parameter Selection from Contact Angle Analysis for the Production of Nature Inspired Self Cleaning Taro Leaf Mimic Glass Surface for Automobile Windscreen. Int. J. Mech. Ind. Technol., 4 (2), 67–71.
- Sutar Rajaram, S. et. al. (2018). Bio-inspired Superhydrophobic and Icephobic Surfaces: A Short Review. Int. J. of. Life Sci., A10, 177–180.
- Mahalakshmi, P., Vanithakumari, S., Gopal, J., Mudali, U., Raj, B. (2011). Enhancing Corrosion and Biofouling Resistance Through Superhydrophobic Surface Modification. Res. Artic. Curr. Sci., 101 (10), 1328–1336. Available at: https://www.jstor.org/stable/24079640
- Ramaratnam, K., Iyer, S. K., Kinnan, M. K., Chumanov, G., Brown, P. J., Luzinov, I. (2008). Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach. Journal of Engineered Fibers and Fabrics, 3 (4), 155892500800300. doi: https://doi.org/10.1177/155892500800300402
- Muzenski, S., Flores-Vivian, I., Sobolev, K. (2014). The Development of Hydrophobic and Superhydrophobic Cementitious Composites. Proceedings of the 4th International Conference on the Durability of Concrete Structures. doi: https://doi.org/10.5703/1288284315484
- Hemnath, A., Sebastiraj, E. (2014). An Overview of Effect of Lotus Effect on the Automotive Windshield using Titanium Oxide. Chemical Science Review and Letter, 2 (6), 487–490.
- Gonzalez, M., Safiuddin, M., Cao, J., Tighe, S. (2016). Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement. Materials Science, 22 (3). doi: https://doi.org/10.5755/j01.ms.22.3.7638
- Schneider, J., Egatz-Gómez, A., Melle, S., Lindsay, S., Domínguez-García, P., Rubio, M. A. et. al. (2008). Motion of viscous drops on superhydrophobic surfaces due to magnetic gradients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323 (1-3), 19–27. doi: https://doi.org/10.1016/j.colsurfa.2007.10.011
- Danikas, M., Ramnalis, P., Sarathi, R. (2009). A Study Of The Behaviour Of water Droplets On Polymeric Surfaces Under The Influence Of Electric Fields In An Inclined Test Arrangement. Journal of Electrical Engineering, 60 (2), 94–99.
- Feng, J.-T., Wang, F.-C., Zhao, Y.-P. (2009). Electrowetting on a lotus leaf. Biomicrofluidics, 3 (2), 022406. doi: https://doi.org/10.1063/1.3124822
- Nasri, N. S., Ahmed, M. M., Mohd Noor, N., Mohammed, J., Hamza, U. D., Mohd Zain, H. (2014). Hydrophobicity Characterization of Bio-Wax Derived from Taro Leaf for Surface Coating Applications. Advanced Materials Research, 1043, 184–188. doi: https://doi.org/10.4028/www.scientific.net/amr.1043.184
- Subagyo, R., Wardana, I. N. G., Widodo, A., Siswanto, E. (2017). The Mechanism of Hydrogen Bubble Formation Caused by the Super Hydrophobic Characteristic of Taro Leaves. International Review of Mechanical Engineering (IREME), 11 (2), 95. doi: https://doi.org/10.15866/ireme.v11i2.10621
- Acebuche, M., Alvarez, M. (2019). Hydrophobic Paper from the Wax of Colocasia esculenta (Taro) Leaf and Chitin from Crab Shell. International Journal of Research Publications, 30 (1), 1–9.
- Kalita, A., Talukdar, N. (2018). Colocasia Esculenta (L.) Leaf Bio-Wax As A Hydrophobic Surface Coating Substance For Paper For Preparing Hydrophobic Paper Bags. International Journal of Pharmacy and Biological Sciences, 8 (2), 583–590.
- Latthe, S., Terashima, C., Nakata, K., Fujishima, A. (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules, 19 (4), 4256–4283. doi: https://doi.org/10.3390/molecules19044256
- Huang, Z., Cai, C., Shi, X., Li, T., Huttula, M., Cao, W. (2016). Leaf-mimicking polymers for hydrophobicity and high transmission haze. Proceedings of the Estonian Academy of Sciences, 66 (4), 444. doi: https://doi.org/10.3176/proc.2017.4.24
- Wagner, P., Fürstner, R., Barthlott, W., Neinhuis, C. (2003). Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. Journal of Experimental Botany, 54 (385), 1295–1303. doi: https://doi.org/10.1093/jxb/erg127
- Lamour, G., Hamraoui, A., Buvailo, A., Xing, Y., Keuleyan, S., Prakash, V. et. al. (2010). Contact Angle Measurements Using a Simplified Experimental Setup. Journal of Chemical Education, 87 (12), 1403–1407. doi: https://doi.org/10.1021/ed100468u
- Pasquini, C. (2003). Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14 (2), 198–219. doi: https://doi.org/10.1590/s0103-50532003000200006
- Lorber, B., Fischer, F., Bailly, M., Roy, H., Kern, D. (2012). Protein analysis by dynamic light scattering: Methods and techniques for students. Biochemistry and Molecular Biology Education, 40 (6), 372–382. doi: https://doi.org/10.1002/bmb.20644
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Gatut Rubiono, Mega Nur Sasongko, Eko Siswanto, ING Wardana
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.