Physical and chemical aspects of mechanical activation of polytetrafluoroethylene composite in obtaining and recycling

Authors

  • Христина Володимирівна Берладір National Technical University of Ukraine «Kyiv Polytechnic Institute» Prospect Pobedy 37, Kyiv, 03056, Ukraine
  • Анатолій Федорович Будник Sumy State University Str. Rimsky-Korsakov, 2, Sumy, 40007, Ukraine
  • Валентин Анатолійович Свідерський National Technical University of Ukraine «Kyiv Polytechnic Institute» Prospect Pobedy 37, Kyiv, 03056, Ukraine https://orcid.org/0000-0002-4457-6875
  • Олег Анатолійович Будник Belgorod State Technological University of V. Shukhov Str. Kostyukova, 46, Russia, Belgorod, 308012, Russian Federation
  • Павло Володимирович Руденко Sumy State University Str. Rimsky-Korsakov, 2, Sumy, 40007, Ukraine
  • Анна Анатоліївна Ільїних State higher education institution «Ukrainian State University of Chemical Technology» Prospect Gagarina, 8, Dnepropetrovsk, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.23381

Keywords:

polymericfluorine materials, recycling, fractional composition, activation technology, structure study, properties, critical concentration, durability

Abstract

For successful recycling of polymericfluorine wastes by selecting equipment and its operating modes, their grinding to certain sizes of fractions, effective activation of the composite ingredients and their homogeneous combination is ensured. It is found that introducing fine aggregate, made of recycled materials, to polytetrafluoroethylene leads to the crystallization processes intensification that is associated with a decrease in the nucleation energy barrier. An increase in the content of the aggregate is accompanied by a decrease in the thermodynamic parameters of polymer composite materials and high strength and durability levels.

Critical concentration of aggregate, made of recycled materials, which ensure the composite structure homogeneity and the required performance characteristics, is defined. Critical concentration of aggregate, made of recycled materials is 25 %, thus, tensile strength of the composite σt= 20 MPa, compressive strength σc = 25 MPa, specific elongation δ = 140 %, wear rate I = 11,0∙10-6 mm3/N∙m are obtained. The methods of instrumental study have confirmed the efficiency of technology for obtaining polytetrafluorethylene composite with aggregate, made of polymericfluorine materials. Performance characteristics of the composite ensure increasing the service life of the seal assembly of compressor 4HM16-10/200 by 1.5 times.

Author Biographies

Христина Володимирівна Берладір, National Technical University of Ukraine «Kyiv Polytechnic Institute» Prospect Pobedy 37, Kyiv, 03056

Postgraduate

Department of chemical technology composite materials

Анатолій Федорович Будник, Sumy State University Str. Rimsky-Korsakov, 2, Sumy, 40007

Candidate of Technical Sciences, Associate Professor

Department of Applied Materials and TCM

Валентин Анатолійович Свідерський, National Technical University of Ukraine «Kyiv Polytechnic Institute» Prospect Pobedy 37, Kyiv, 03056

Professor

Department of chemical technology composite materials

Олег Анатолійович Будник, Belgorod State Technological University of V. Shukhov Str. Kostyukova, 46, Russia, Belgorod, 308012

Candidate of Technical Sciences, Associate Professor

Department of Inorganic Chemistry

Павло Володимирович Руденко, Sumy State University Str. Rimsky-Korsakov, 2, Sumy, 40007

Assistant

Department of Applied Materials and TCM

Анна Анатоліївна Ільїних, State higher education institution «Ukrainian State University of Chemical Technology» Prospect Gagarina, 8, Dnepropetrovsk, 49005

Postgraduate

Department of  plastic and photo-, nano-, and polygraphic materials

References

  1. Будник, А. Ф. Использование вторичных композиционных материалов для получения новых полимерных композитов [Текст] / А. Ф. Будник, С. И. Колесников, В. А. Калиниченко // III Межотраслевое совещание по проблеме «Использование отходов производства и потребления полимерных материалов в народном хозяйстве». - Харьков, 1988. - С. 16.
  2. Кадыкова, Ю. А. Базальтопластики на основе базальтовой ваты [Текст] / Ю. А. Кадыкова, О. В. Егорова, С. В. Улегин и др. // Международная научная конференция «Теоретические и практические научные инновации». – Краков, 2013. – С. 78-80.
  3. Grakovich, P. N. Plasma-Chemied modification of carbon fibers as an efficient method of regulation properties of PTFE-based composite materials [Текст] / P. N. Grakovich, V. A. Shelestova // Science in China. Mathematics, Physics, Astronomy. – 2001. – Ser. A. – V. 44. – P. 292–296.
  4. Tanaka, K. Effect of various fillers on the friction and wear of polytetrafluoroethylene bases on composites [Текст] / K. Tanaka, S. Kawakami // Wear. – 1982. – V.79, № 2. – P. 221-234.
  5. Пархомчук, Ж. В. Возможность использования вторичного измельченного углепластика при формировании углефторопластового композитного материала [Текст] / Ж. В. Пархомчук, П. В. Руденко // Матеріали VI міжнародної науково-технічної Web – конференції «Композиційні матеріали». – Київ, 2012. – С. 153-154.
  6. Берладир, К. В. Использование вальцевания в технологическом процессе измельчения вторичного углепластика [Текст] / К. В. Берладир, П. В. Руденко // Матеріали VI міжнародної науково-технічної Web – конференції «Композиційні матеріали». – Київ, 2012. – С. 155-156.
  7. Ahmed, S. Review of theories for polymer composites reinforced with powder-filler [Текст] / S. Ahmed, P. R. Jones // J. Mater. Sci. – 1990. - № 12. – P. 4933-4942.
  8. Берладир, К. В. Физическая модификация фторопласта-4 с целью повышения триботехнических свойств композитов на его основе [Текст] / К. В. Берладир, В. А. Свидерский // VI Міжнародна науково-технічна конференція студентів, аспірантів та молодих вчених «Хімія та сучасні технології». – Днепропетровск, 2013. – С. 150-151.
  9. Аввакумов, Е. Г. Механические методы активации химических процессов [Текст] / Е. Г. Аввакумов. – 2-е изд., перераб. и доп. – Новосибирск : Наука, 1986. – 297 с.
  10. Bahadur, S. The action of fillers in the modification of the tribological behavior of polymers [Текст] / S. Bahadur, D. Gong // Wear. – 1992. – V. 158. – P. 41-59.
  11. Seymour, R. B. Fillers for polymers [Текст] / R. B. Seymour // Pop. Plast. – 1982. - V. 27, № 5. – P. 16-19.
  12. Bahadur, S. Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance [Текст] / S. Bahadur, D. Gong // Wear. – 1992. – V. 157. – P. 229-243.
  13. Budnik, A. F. (1988). The use of secondary composite materials to produce new polymer composites [Ispol’zovaniye vtorichnykh kompozitsionnykh materialov dlya polucheniya novykh polimernykh kompozitov]. III Mezhotraslevoye soveshchaniye po probleme «Ispol’zovaniye otkhodov proizvodstva i potrebleniya polimernykh materialov v narodnom khozyaystve» (III Interdisciplinary meeting on «Using waste production and consumption of polymeric materials in the national economy»). Kharkiv, 16.
  14. Kadykova, Y. A. (2013). Basaltplastics on the basis of basalt wool [Bazal’toplastiki na osnove bazal’tovoy vaty]. Mezhdunarodnaya nauchnaya konferentsiya «Teoreticheskiye i prakticheskiye nauchnyye innovatsii» [International Scientific Conference «Theoretical and practical scientific innovation»]. Krakow, 78-80.
  15. Grakovich, P. N. (2001). Plasma-Chemied modification of carbon fibers as an efficient method of regulation properties of PTFE-based composite materials. Science in China. Mathematics, Physics, Astronomy, 44, 292–296.
  16. Tanaka, K. (1982). Effect of various fillers on the friction and wear of polytetrafluoroethylene bases on composites. Wear, 79, 221-234.
  17. Parkhomchuk, Z. V. (2012). The possibility of using recycled milled carbon plastic in forming the carbonfluoroplastic composite material [Vozmozhnost’ ispol’zovaniya vtorichnogo izmel’chennogo ugleplastika pri formirovanii ugleftoroplastovogo kompozitnogo materiala]. Materialy VI mizhnarodnoyi naukovo-tekhnichnoyi Web – konferentsiyi «Kompozytsiyni materialy» [Materials VI International Scientific and Technical Web - Conference «Composite Materials »]. Kiev, 153-154.
  18. Berladir, K. V. (2012). Using a rolling process in the secondary grinding carbon plastic [Ispol’zovaniye val’tsevaniya v tekhnologicheskom protsesse izmel’cheniya vtorichnogo ugleplastika]. Materialy VI mizhnarodnoyi naukovo-tekhnichnoyi Web – konferentsiyi «Kompozytsiyni materialy» [Materials VI International Scientific and Technical Web - Conference «Composite Materials»]. Kiev, 155-156.
  19. Ahmed, S. (1990). Review of theories for polymer composites reinforced with powder-filler. J. Mater. Sci., 12, 4933-4942.
  20. Berladir, K. V. (2013). Physical modification of fluoroplastic-4 to improve the tribological properties of composites based on it [Fizicheskaya modifikatsiya ftoroplasta-4 s tsel’yu povysheniya tribotekhnicheskikh svoystv kompozitov na yego osnove]. VI Mizhnarodna naukovo-tekhnichna konferentsiya studentiv, aspirantiv ta molodikh vchenikh «KHimiya ta suchasni tekhnologii» [VI International Scientific Conference of Students and Young Scientists «Modern Chemistry and Technology»]. Dnepropetrovsk, 150-151.
  21. Avvakumov, E. G (1986) Mechanical methods of activation of chemical processes. Novosibirsk, Russia : Science.
  22. Bahadur, S. (1992). The action of fillers in the modification of the tribological behavior of polymers. Wear, 158, 41-59.
  23. Seymour, R. B. (1982). Fillers for polymers. Pop. Plast, 28, 16-19.
  24. Bahadur, S. (1992). Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance. Wear, 157, 229-243.

Published

2014-04-15

How to Cite

Берладір, Х. В., Будник, А. Ф., Свідерський, В. А., Будник, О. А., Руденко, П. В., & Ільїних, А. А. (2014). Physical and chemical aspects of mechanical activation of polytetrafluoroethylene composite in obtaining and recycling. Eastern-European Journal of Enterprise Technologies, 2(11(68), 9–15. https://doi.org/10.15587/1729-4061.2014.23381

Issue

Section

Materials Science