Energy power parameter effect of hot rolling on the formation of the structure and properties of low-alloy steels

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.247269

Keywords:

Hensel-Spittel formula, hot deformation, physical modeling, power parameters, ferrite

Abstract

The temperature and degree of hot deformation for steel 10HFTBch have been determined. This made it possible to ensure an increase in the mechanical properties of this steel, namely, the ultimate strength up to 540–560 MPa, as well as the relative elongation up to 25–29 %. As a result, it became possible to increase the service life of wheels with increased carrying capacity. This, in turn, will make it possible to increase the load of the transported cargo by motor vehicles several times.

The mechanism of the influence of the energy-power parameters of rolling on the formation of the macro- and microstructure of a two-phase steel in the process of hot deformation is disclosed. The applied scheme provided an increase in the homogeneity of the structure of the developed steel, which saved the central part of the rolled section from overheating. It has been established that a decrease in the temperature of the end of deformation leads to a decrease in the size of the recrystallized austenite grain, and, consequently, to a refinement of the ferrite grain. Also an important factor in preventing the growth of ferrite grains in the upper part of the ferritic region is the abolition of cooling of the steel in coils.

The recommended mode for multicomponent alloy steel 10HFTBch is as follows: the temperature of the end of rolling is 850 °C, the beginning of accelerated cooling is 750 °C, and the temperature of strip coiling into a coil is 600 °C.

The basis for ensuring the increased strength of two-phase steels is the ratio and distribution of structural fractions – ferrite (initial and precipitated from austenite), as well as martensite. When hardened by such traditional "martensite formations" as manganese, the ability to control properties is limited. This is reflected in a narrow range of variation in the strength and ductility of the developed steel. The optimal combination of strength characteristics of plastic properties reduces the metal consumption of the product by 15–25 %.

Author Biographies

Sergey Sheyko, Zaporizhzhia National University

PhD, Associate Professor

Department of General and Applied Physics

Anton Matiukhin, Zaporizhzhia Polytechnic National University

PhD, Associate Professor

Department of Metal Forming

Volodymyr Tsyganov, Zaporizhzhia Polytechnic National University

Doctor of Technical Sciences, Associate Professor

Department of Metal-Cutting Machines and Tools

Andrey Andreev, Zaporizhzhia National University

Doctor of Pedagogical Sciences, Associate Professor

Department of General and Applied Physics

Anna Ben, Zaporizhzhia Polytechnic National University

Senior Lecturer

Department of Metal Forming

Elena Kulabneva, Zaporizhzhia Polytechnic National University

Senior Lecturer

Department of Theory and Practice of Translation

References

  1. Chigirinskiy, V. V., Mazur, V. L., Belikov, S. B., Kolesnik, F. I., Legotkin, G. I. (2010). Sovremennoe proizvodstvo koles avtotransportnyh sredstv i sel'skohozyaystvennoy tekhniki. Dnepropetrovsk: Dnepr-VAL, 309.
  2. Shejko, S., Mishchenko, V., Tretiak, V., Shalomeev, V., Sukhomlin, G. (2018). Formation of the Grain Boundary Structure of Low-Alloyed Steels in the Process of Plastic Deformation. Contributed Papers from MS&T17. doi: https://doi.org/10.7449/2018mst/2018/mst_2018_746_753
  3. Chigirinskiy, V. V., Shejko, S. P., Dyja, H., Knapinski, M. (2015). Experimental and theoretical analysis of stress state of plastic medium influence on structural transformations in low-alloy steels. Metallurgical and Mining Industry, 11, 188–195.
  4. Byalik, H., Ivschenko, L., Mokhnach, R., Naumik, V., Tsyganov, V. (2019). Steel-Copper Nano Composited Materials. Contributed Papers from MS&T19. doi: https://doi.org/10.7449/2019mst/2019/mst_2019_439_443
  5. Sheiko, S. P., Mishchenko, V. G., Matyukhin, A. Y., Tsyganov, V. V., Tretyak, V. I. (2021). Reserves for Enhancing the Mechanical Performance of 10HFTBch Low-Perlite Steel Exposed to Thermoplastic Processing in Intercritical Temperature Ranges. Steel in Translation, 51 (4), 278–281. doi: https://doi.org/10.3103/s0967091221040100
  6. Mishchenko, V., Shejko, S., Sukhomlin, G. (2019). Formation of Polygonized Structures and Nuclear Recrystallization under Controlled Rolling of Low-Carbon Steels. Contributed Papers from MS&T19. doi: https://doi.org/10.7449/2019mst/2019/mst_2019_1427_1431
  7. Byalik, H., Ivschenko, L., Mokhnach, R., Sakhniuk, N., Tsyganov, V. (2019). Creation of Wearproof Eutecticum Composition Materials for the Details of the High Temperature Dynamic Systems. Contributed Papers from MS&T19. doi: https://doi.org/10.7449/2019mst/2019/mst_2019_450_456
  8. Yuriy, B., Aleksandr, Z., Karina, B. (2017). The investigation of nanostructure formation in intermetallic γ-TiAl alloys. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF). doi: https://doi.org/10.1109/ysf.2017.8126640
  9. Ishimov, A. S., Baryshnikov, M. P., Chukin, M. V. (2015). On the selection of a mathematical function of the equation of state for a description of rheological properties of steel 20 during hot plastic deformation. Vestnik MGTU im. G.I. Nosova, 1, 43–52.
  10. Glowacki, M. (1999). Wplyw metod obliczeniowych na poprawnosc analizy procesu walcowania w wykrojach. Konf. Walcownictwo’99. Ustron, 57–62.
  11. Glowacki, M., Mroz, S., Lesik, L. (1999). Analiza podstawowych wzorow empirycznych obli-czania parametrow energetyczno-sitowych procesu walcowania w wykrojach. Hutnik: Wiadomosci Hutnicze, 11, 523–529.
  12. Pavlenko, D. V., Belokon’, Y. О., Tkach, D. V. (2020). Resource-Saving Technology of Manufacturing of Semifinished Products from Intermetallic γ-TiAl Alloys Intended for Aviation Engineering. Materials Science, 55 (6), 908–914. doi: https://doi.org/10.1007/s11003-020-00386-1
  13. Cook, P. M. (1957). The real cuves, stress rate of deformation for the steels by reduction. The Institution of Mechanion Engineer, 75–77.
  14. Dinnik, A. A. (1959). Istinnye predely tekuchesti pri goryachey prokatke stali. Sovremennye dostizheniya prokatnogo proizvodstva, 2, 64–70.
  15. Sliepynin, O. H., Mishchenko, V. H., Sheiko, S. P., Lehotkin, H. I., Fedosenko, D. M., Bielikov, S. B., Chyhyrynskyi, V. V. (2013). Pat. No. 105341 UA. Nyzkolehovana stal. No. a201309313; declareted: 25.07.2013; published: 25.04.2014, Bul. No. 8. Available at: https://uapatents.com/6-105341-nizkolegovana-stal.html
  16. Poluhin, P. I., Gun, G. Ya., Galkin, A. M. (1983). Soprotivlenie plasticheskoy deformatsii metallov i splavov. Moscow: Metallurgiya, 350.
  17. Novik, F. S., Arsov, Ya. B. (1980). Optimizatsiya protsessov tekhnologii metallov metodami planirovaniya eksperimentov. Moscow: Mashinostroenie; Sofiya: Tekhnika, 304.
  18. Sheyko, S. P., Mischenko, V. G., Belokon', Yu. A., Protsenko, V. M., Tsyganov, V. V. (2021). Tekhnologicheskie faktory povysheniya mekhanicheskih svoystv maloperlitnyh staley tipa 10HFTBch v proizvodstve goryachego prokata. Stal', 1, 62–64.
  19. Tret'yakov, A. V., Zyuzin, V. I. (1973). Mekhanicheskie svoystva metallov i splavov pri obrabotke davleniem. Moscow: Metallurgiya, 224.
  20. Tarnovskiy, I. Ya., Pozdeev, A. A., Meandrov, L. V. et. al. (1960). Mekhanicheskie svoystva stali pri goryachey obrabotke davleniem. Sverdlovsk: Metallurgizdat, 260.
  21. Zyuzin, V. I., Brovman, M. Ya., Mel'nikov, A. F., Sadovnikov, B. V. (1964). Soprotivlenie deformatsii staley pri goryachey prokatke. Moscow: Metallurgiya, 270.
  22. Sereda, B., Sheyko, S., Belokon, Y., Sereda, D. (2011). The influence of modification on structure and properties of rapid steel. Materials Science and Technology Conference and Exhibition 2011, MS and T'11, 1, 713–716. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-84856169276&origin=inward&txGid=0
  23. Tsyganov, V. V., Mokhnach, R. E., Sheiko, S. P. (2021). Increasing Wear Resistance of Steel by Optimizing Structural State of Surface Layer. Steel in Translation, 51 (2), 144–147. doi: https://doi.org/10.3103/s096709122102011x
  24. Henzel', A., Shpittel', T. (1982). Raschet energosilovyh parametrov v protsessah obrabotki metallov davleniem. Moscow: Metallurgiya, 360.
  25. Tsouhar, G. (1963). Silovye vozdeystviya pri prokatke v vytyazhnyh kalibrah. Moscow: Metallurgizdat, 208.
  26. Nadai, A. (1969). Plastichnost' i razrushenie tverdyh tel. Vol. 2. Moscow: Mir, 864.
  27. Zyuzin, V. I. (1963). Opredelenie soprotivleniya deformatsii metodom termomekhanicheskih koeffitsientov. Trudy VNIIMETMASh, 8, 74–89.
  28. Mishchenko, V., Menyaylo, А. (2015). Control of carburization and decarburization processes of alloy steels at thermochemical and thermal treatment. Metallurgical and Mining Industry, 11, 244–249. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_11/036_Valeriy_Mishchenko.pdf
  29. Belokon, K., Belokon, Y. (2018). The Usage of Heat Explosion to Synthesize Intermetallic Compounds and Alloys. Processing, Properties, and Design of Advanced Ceramics and Composites II, 109–115. doi: https://doi.org/10.1002/9781119423829.ch9

Downloads

Published

2021-12-22

How to Cite

Sheyko, S., Matiukhin, A., Tsyganov, V., Andreev, A., Ben, A., & Kulabneva, E. (2021). Energy power parameter effect of hot rolling on the formation of the structure and properties of low-alloy steels . Eastern-European Journal of Enterprise Technologies, 6(12 (114), 20–26. https://doi.org/10.15587/1729-4061.2021.247269

Issue

Section

Materials Science