Building a model of damage to the fractal structure of the shell of the fuel element of a nuclear reactor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.263374

Keywords:

fuel element shell, shell damage model, fractal structure, fractal dimensionality

Abstract

This paper considers the physical processes in the structure of the material for a heat-emitting fuel element (FE) shell, caused by various damaging defects, on its outer and inner surfaces, and affecting the change in the geometric parameters of a nuclear reactor’s FE.

The task to improve the model of damage to an FE shell is being solved, taking into consideration structural and phase changes in the material of the shell with damaging defects on the outer and inner surfaces, in order to establish the actual criterion for assessing the FE hermeticity degree.

It is proposed to study the structure of the shell material with damaging defects (macropores and microcracks), which is a porous heterogeneous structure with fractal properties of self-similarity and scalability, to use the apparatus of fractal geometry.

A physical model of the FE shell has been built and proposed, in the form of a geometric cylinder-shaped figure, which makes it possible to investigate the fractal properties of the structure of the material of the damaged shell and their influence on a change in the geometric parameters of FE

An improved model of damage to the FE shell was derived, which makes it possible to take into consideration fractal increases in the geometric parameters of FE, for the established values of the fractal dimensionality.

Experimental studies of the FE shell, using the skin effect, confirmed the theoretical results and showed the validity of the choice of practical use of the fractal dimensionality parameter as an effective criterion for assessing the hermeticity degree of an FE shell. It has been experimentally established that the value of the fractal dimensionality of 2.68 corresponds to the maximum degree of damage to the shell for a leaky FE.

Author Biographies

Pavlo Budanov, Ukrainian Engineering Pedagogics Academy

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Eduard Khomiak, Ukrainian Engineering Pedagogics Academy

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Ihor Kyrysov, Ukrainian Engineering Pedagogics Academy

Senior Lecturer

Department of Physics, Electrical Engineering and Power Engineering

Kostiantyn Brovko, Ukrainian Engineering Pedagogics Academy

PhD, Associate Professor

Department of Physics, Electrical Engineering and Power Engineering

Sergiy Kalnoy, Ivan Kozhedub Kharkiv National Air Force University

PhD, Associate Professor

Department of Physics and Radio Electronics

Oleh Karpenko, Ivan Kozhedub Kharkiv National Air Force University

PhD, Associate Professor

Department of Physics and Radio Engineering

References

  1. Parga, C. J., Rooyen, I. J., Luther, E. P. (2018). Fuel – clad chemical interaction evaluation of the TREAT reactor conceptual low-enriched-uranium fuel element. Journal of Nuclear Materials, 512, 252–267. doi: http://doi.org/10.1016/j.jnucmat.2018.10.028
  2. Tang, J., Huang, M., Zhao, Y., Ouyang, X., Huang, J. (2017). A new procedure for solving steady-state and transient-state nonlinear radial conduction problems of nuclear fuel rods. Annals of Nuclear Energy, 110, 492–500. doi: http://doi.org/10.1016/j.anucene.2017.05.061
  3. Pelykh, S. N., Maksimov, M. V., Baskakov, V. E. (2013). Grounds of VVER-1000 fuel cladding life control. Annals of Nuclear Energy, 58, 188–197. doi: http://doi.org/10.1016/j.anucene.2013.03.020
  4. Yong, S., Linzi, Z. (2022). Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants. Process Safety and Environmental Protection, 163, 438–452. doi: http://doi.org/10.1016/j.psep.2022.05.039
  5. Philip, B., Berrill, M. A., Allu, S., Hamilton, S. P., Sampath, R. S., Clarno, K. T., Dilts, G. A. (2015). A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins. Journal of Computational Physics, 286, 143–171. doi: http://doi.org/10.1016/j.jcp.2015.01.029
  6. Zheng, Y. (2020). Predicting stochastic characteristics of generalized eigenvalues via a novel sensitivity-based probability density evolution method. Applied Mathematical Modelling, 88, 437–460. doi: http://doi.org/10.1016/j.apm.2020.06.060
  7. Hyung, M. S., Kune, Y. S. (2011). Evolutionary design of reactor vessel assembly for liquid metal cooled battery. Progress in Nuclear Energy, 53 (7), 825–830. doi: http://doi.org/10.1016/j.pnucene.2011.05.026
  8. Abdul, R. K., Afzal, R. A., Mohammed, A. D., Ramis, M. K. (2019). Effect of cladding on thermal behavior of nuclear fuel element with non-uniform heat generation. Progress in Nuclear Energy, 111, 1–14. doi: http://doi.org/10.1016/j.pnucene.2018.10.013
  9. Belles, R. J. (2021). Key reactor system components in integral pressurized water reactors (iPWRs). Handbook of Small Modular Nuclear Reactors, 95–115. doi: http://doi.org/10.1016/b978-0-12-823916-2.00005-9
  10. Shuang, X., Xuhua, Z., Gaojie, H., Xiaxin, C. (2021). CFD analysis of the flow blockage in a rectangular fuel assembly of the IAEA 10 MW MTR research reactor. Nuclear Engineering and Technology, 53 (9), 2847–2858. doi: http://doi.org/10.1016/j.net.2021.03.028
  11. Pecchia, M., Vasiliev, A., Ferroukhi, H., Pautz, A. (2017). A methodology for evaluating weighting functions using MCNP and its application to PWR ex-core analyses. Annals of Nuclear Energy, 105, 121–132. doi: http://doi.org/10.1016/j.anucene.2017.03.008
  12. Budanov, P., Kyrysov, I., Brovko, K., Rudenko, D., Vasiuchenko, P., Nosyk, A. (2018). Development of a Solar Element Model Using the Method of Fractal Geometry Theory. Eastern-Eruropian Journal of Enterprise Thechnologies, 3 (8 (111)), 75–89. doi: http://doi.org/10.15587/1729-4061.2021.235882
  13. Puthiyavinayagam, P., Selvaraj, P., Balasubramaniyan, V., Raghupathy, S., Velusamy, K., Devan, K., Nashine, B. et. al. (2017). Development of fast breeder reactor technology in India. Progress in Nuclear Energy, 101, 19–42. doi: http://doi.org/10.1016/j.pnucene.2017.03.015
  14. Williamson, R. L., Hales, J. D., Novascone, S. R., Tonks, M. R., Gaston, D. R., Permann, C. J. et. al. (2012). Multidimensional multiphysics simulation of nuclear fuel behavior. Journal of Nuclear Materials, 423 (1-3), 149–163. doi: http://doi.org/10.1016/j.jnucmat.2012.01.012
  15. Dawahra, S., Khattab, K., Alhabit, F. (2020). MNSR transient analysis using the RELAP5/Mod3.2 code. Nuclear Engineering and Technology, 52 (9), 1990–1997. doi: http://doi.org/10.1016/j.net.2020.03.006
  16. Fiorina, C., Clifford, I., Kelm, S., Lorenzi, S. (2022). On the development of multi-physics tools for nuclear reactor analysis based on OpenFOAM: state of the art, lessons learned and perspectives. Nuclear Engineering and Design, 387, 1–15. doi: http://doi.org/10.1016/j.nucengdes.2021.111604
  17. Papin, J. (2019). Behavior of Fast Reactor Fuel During Transient and Accident Conditions. Comprehensive Nuclear Materials, 2, 339–362. doi: http://doi.org/10.1016/b978-0-08-102865-0.00039-x
  18. Clifford, I., Pecchia, M., Puragliesi, R., Vasiliev, A., Ferroukhi, H. (2018). On the characteristics of the flow and heat transfer in the core bypass region of a PWR. Nuclear Engineering and Design, 330, 117–128. doi: http://doi.org/10.1016/j.nucengdes.2018.01.039
  19. Budanov, P., Brovko, K., Cherniuk, A., Pantielieieva, I., Oliynyk, Y., Shmatko, N., Vasyuchenko, P. (2018). Improvement of safety of autonomous electrical installations by implementing a method for calculating the electrolytic grounding electrodes parameters. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 20–28. doi: http://doi.org/10.15587/1729-4061.2018.144925
  20. Budanov, P., Brovko, K., Cherniuk, A., Vasyuchenko, P., Khomenko, V. (2018). Improving the reliability of information­control systems at power generation facilities based on the fractal­cluster theory. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 4–12. doi: http://doi.org/10.15587/1729-4061.2018.126427
  21. Hohorst, J. K. (1990). MATPRO-A, a library of materials properties for light-waterreactor accident analysis. Idaho Falls: Idaho National Engineering Lab, 4, 1098.
  22. Feder, E. (2014). Fraktaly. Moscow: URSS: Len, 256.
  23. Balkhanov, V. K. (2013). Osnovy fraktalnoi geometrii i fraktalnogo ischisleniia. Izd-vo Buriatskogo gosuniversiteta, 224.
  24. Mandelbrot, B. (2010). Fraktalnaia geometriia prirody. IIKI, NITc «Reguliarnaia i khaoticheskaia dinamika», 656.
  25. Skobov, V. G., Chernov, A. S. (2013). Nelineinyi skin-effekt v polumetallakh. Fizika tverdogo tela, 55 (10), 1903–1907.

Downloads

Published

2022-08-29

How to Cite

Budanov, P., Khomiak, E., Kyrysov, I., Brovko, K., Kalnoy, S., & Karpenko, O. (2022). Building a model of damage to the fractal structure of the shell of the fuel element of a nuclear reactor . Eastern-European Journal of Enterprise Technologies, 4(8 (118), 60–70. https://doi.org/10.15587/1729-4061.2022.263374

Issue

Section

Energy-saving technologies and equipment