Development of oxide composite materials for cathode element of IT-SOFCs

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.269852

Keywords:

solid oxide fuel cells, cobalt-free cathode composite, perovskite structure, oxygen content, electronic conductivity

Abstract

Investigating the properties of composite oxide for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been done as a new cathode material. Using a solid-state reaction method, the metallic oxide material has been employed to create the composite model system. During the sintering process, a model system of Sm0.5Sr0.35Ba0.15FeO3-δ (SSBF15) was constructed. Thermal gravimetric analysis (TG) was played to utilize the oxygen content and weight loss of the model. In the meantime, the structure of the composite was characterized using X-ray diffraction (XRD), and the conductivity properties were tested by thermal conductivity. The structural design was made possible by the findings, which revealed that the composite model structure exhibited the crystalline structure with perovskite phase. Weight losses during the construction of the structure were reflected in the decomposition and evaporation of the composite's constituent parts. After the calcination process up to 950 °C, the model system's formation oxygen content was obtained of 2.94 in 800 °C. The electrical conductivity maximum obtained in 12.2 S·cm-1 at 430 °C. At low temperatures, the conductive behavior was affected by the metallic element, while at higher temperatures, it was influenced by the ionic structure. As a result, mixed ionic and electric conductors (MIEC) were extensively utilized in the process of generating the conductive properties. The SSBF15 composite has a good chance of being used as an alternative cathode material with a perovskite single phase for future IT-SOFCs applications based on the structure and conductivity results. Additional testing and observation are required to determine the resistance's value when incorporated into the electrolyte and its heat expansion properties

Supporting Agency

  • The author would like to acknowledge the funding support to this research from the Center of research and community service Politeknik Negeri Jakarta.

Author Biographies

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Associate Professor

Department of Mechanical Engineering

Dianta Mustofa Kamal, Politeknik Negeri Jakarta

Doctor of Energy Conversion, Associate Professor

Department of Mechanical Engineering

Tia Rahmiati, Politeknik Negeri Jakarta

Master of Engineering in Metallurgy and Materials, Associate Professor

Department of Mechanical Engineering

Vika Rizkia, Politeknik Negeri Jakarta

Doctor of Engineering in Metallurgy and Materials, Associate Professor

Department of Mechanical Engineering

Fuad Zainuri, Politeknik Negeri Jakarta

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Belyamin Belyamin, Politeknik Negeri Jakarta

Doctor of Energy Conversion, Associate Professor

Department of Mechanical Engineering

Sulaksana Permana, Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials, Associate Professor

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Adi Subardi, Institut Teknologi Nasional Yogyakarta

Doctor of Materials Science and Engineering, Associate Professor

Department of Mechanical Engineering

Yen-Pei Fu, National Dong Hwa University

Doctor of Materials, Professor

Department of Materials Science and Engineering

References

  1. Tan, L., Dong, X., Gong, Z., Wang, M. (2018). Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones. Energy, 165, 1106–1118. doi: https://doi.org/10.1016/j.energy.2018.10.054
  2. Bompard, E., Napoli, R., Wan, B., Orsello, G. (2008). Economics evaluation of a 5kW SOFC power system for residential use. International Journal of Hydrogen Energy, 33 (12), 3243–3247. doi: https://doi.org/10.1016/j.ijhydene.2008.04.017
  3. Naimaster, E. J., Sleiti, A. K. (2013). Potential of SOFC CHP systems for energy-efficient commercial buildings. Energy and Buildings, 61, 153–160. doi: https://doi.org/10.1016/j.enbuild.2012.09.045
  4. Fernandes, A., Woudstra, T., van Wijk, A., Verhoef, L., Aravind, P. V. (2016). Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs. Applied Energy, 173, 13–28. doi: https://doi.org/10.1016/j.apenergy.2016.03.107
  5. Ramadhani, F., Hussain, M. A., Mokhlis, H., Hajimolana, S. (2017). Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable and Sustainable Energy Reviews, 76, 460–484. doi: https://doi.org/10.1016/j.rser.2017.03.052
  6. Jiang, S., Sunarso, J., Zhou, W., Shen, J., Ran, R., Shao, Z. (2015). Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 298, 209–216. doi: https://doi.org/10.1016/j.jpowsour.2015.08.063
  7. Li, C.-H., Hu, S.-H., Tay, K.-W., Fu, Y.-P. (2012). Electrochemical characterization of gradient Sm0.5Sr0.5CoO3−δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells. Ceramics International, 38 (2), 1557–1562. doi: https://doi.org/10.1016/j.ceramint.2011.09.041
  8. Wang, S., Feng, Y., Wang, D. (2014). Electrochemical comparison of cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3−δ based cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 40 (4), 6359–6363. doi: https://doi.org/10.1016/j.ceramint.2013.10.133
  9. Subardi, A., Chen, C.-C., Cheng, M.-H., Chang, W.-K., Fu, Y.-P. (2016). Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: https://doi.org/10.1016/j.electacta.2016.04.069
  10. Baharuddin, N. A., Muchtar, A., Somalu, M. R. (2017). Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (14), 9149–9155. doi: https://doi.org/10.1016/j.ijhydene.2016.04.097
  11. Mastin, J., Einarsrud, M.-A., Grande, T. (2006). Structural and Thermal Properties of La1-xSrxCoO3-δ. Chemistry of Materials, 18 (25), 6047–6053. doi: https://doi.org/10.1021/cm061539k
  12. Ji, H.-I., Hwang, J., Yoon, K. J., Son, J.-W., Kim, B.-K., Lee, H.-W., Lee, J.-H. (2013). Enhanced oxygen diffusion in epitaxial lanthanum–strontium–cobaltite thin film cathodes for micro solid oxidefuel cells. Energy Environ. Sci., 6 (1), 116–120. doi: https://doi.org/10.1039/c2ee21647g
  13. Shao, Z., Haile, S. M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431 (7005), 170–173. doi: https://doi.org/10.1038/nature02863
  14. Yang, W., Hong, T., Li, S., Ma, Z., Sun, C., Xia, C., Chen, L. (2013). Perovskite Sr1–xCexCoO3−δ (0.05 ≤ x ≤ 0.15) as Superior Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 5 (3), 1143–1148. doi: https://doi.org/10.1021/am3029238
  15. Wei, B., Lü, Z., Huang, X., Liu, M., Li, N., Su, W. (2008). Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode. Journal of Power Sources, 176 (1), 1–8. doi: https://doi.org/10.1016/j.jpowsour.2007.09.120
  16. Ling, Y., Zhao, L., Lin, B., Dong, Y., Zhang, X., Meng, G., Liu, X. (2010). Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3−δ for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 35 (13), 6905–6910. doi: https://doi.org/10.1016/j.ijhydene.2010.04.021
  17. Liu, H., Zhu, K., Liu, Y., Li, W., Cai, L., Zhu, X. et al. (2018). Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 279, 224–230. doi: https://doi.org/10.1016/j.electacta.2018.05.086
  18. Zhao, L., He, B., Zhang, X., Peng, R., Meng, G., Liu, X. (2010). Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for solid oxide fuel cell cathode. Journal of Power Sources, 195 (7), 1859–1861. doi: https://doi.org/10.1016/j.jpowsour.2009.09.078
  19. Pang, S., Wang, W., Chen, T., Shen, X., Wang, Y., Xu, K., Xi, X. (2016). Systematic evaluation of cobalt-free Ln0.5Sr0•5Fe0•8Cu0•2O3−δ (Ln = La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 326, 176–181. doi: https://doi.org/10.1016/j.jpowsour.2016.06.134
  20. Ding, X., Gao, X., Zhu, W., Wang, J., Jiang, J. (2014). Electrode redox properties of Ba1−xLaxFeO3−δ as cobalt free cathode materials for intermediate-temperature SOFCs. International Journal of Hydrogen Energy, 39 (23), 12092–12100. doi: https://doi.org/10.1016/j.ijhydene.2014.06.009
  21. Meng, X., Lü, S., Yu, W. W., Ji, Y., Sui, Y., Wei, M. (2018). Layered perovskite LnBa0.5Sr0.5Cu2O5+δ (Ln = Pr and Nd) as cobalt-free cathode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 43 (9), 4458–4470. doi: https://doi.org/10.1016/j.ijhydene.2018.01.033
  22. Ling, Y., Zhang, X., Wang, Z., Wang, S., Zhao, L., Liu, X., Lin, B. (2013). Potentiality of cobalt-free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3−δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 38 (33), 14323–14328. doi: https://doi.org/10.1016/j.ijhydene.2013.08.089
  23. Chen, D., Chen, C., Dong, F., Shao, Z., Ciucci, F. (2014). Cobalt-free polycrystalline Ba0.95La0.05FeO3−δ thin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 250, 188–195. doi: https://doi.org/10.1016/j.jpowsour.2013.11.010
  24. Fu, Y.-P. (2010). Sm0.5Sr0.5Co0.4Ni0.6O3−δ–Sm0.2Ce0.8O1.9 as a potential cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 35 (16), 8663–8669. doi: https://doi.org/10.1016/j.ijhydene.2010.05.109
  25. Ding, X., Kong, X., Wu, H., Zhu, Y., Tang, J., Zhong, Y. (2012). SmBa0.5Sr0.5Cu2O5+δ and SmBa0.5Sr0.5CuFeO5+δ layered perovskite oxides as cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 37 (3), 2546–2551. doi: https://doi.org/10.1016/j.ijhydene.2011.10.080
  26. Kamal, D. M., Susanto, I., Subarkah, R., Zainuri, F., Zainuri, B., Rahmiati, T. et al. (2021). Design of solid oxide structure on the composite cathode for IT-SOFC. Eastern-European Journal of Enterprise Technologies, 4 (5 (112)), 6–11. doi: https://doi.org/10.15587/1729-4061.2021.239162
  27. Subardi, A., Liao, K.-Y., Fu, Y.-P. (2019). Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δ cathode for SOFCs. Journal of the European Ceramic Society, 39 (1), 30–40. doi: https://doi.org/10.1016/j.jeurceramsoc.2018.01.022
  28. Subardi, A., Susanto, I., Kartikasari, R., Tugino, T., Kuntara, H., Wijaya, A. E. et al. (2021). An analysis of SmBa0.5Sr0.5Co2O5+δ double perovskite oxide for intermediate–temperature solid oxide fuel cells. Eastern-European Journal of Enterprise Technologies, 2 (12 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.226342
  29. Susanto, I., Kamal, D. M., Ruswanto, S., Subarkah, R., Zainuri, F., Permana, S. et al. (2020). Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 15–20. doi: https://doi.org/10.15587/1729-4061.2020.217282
Development of oxide composite materials for cathode element of IT-SOFCs

Downloads

Published

2022-12-30

How to Cite

Susanto, I., Kamal, D. M., Rahmiati, T., Rizkia, V., Zainuri, F., Belyamin, B., Permana, S., Subardi, A., & Fu, Y.-P. (2022). Development of oxide composite materials for cathode element of IT-SOFCs . Eastern-European Journal of Enterprise Technologies, 6(12 (120), 40–45. https://doi.org/10.15587/1729-4061.2022.269852

Issue

Section

Materials Science