Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.272949

Keywords:

mean bicoherence, complex bispectrum, change in hazardous parameters, gas environment, material ignition

Abstract

The object of this study is a change in the hazardous parameters of the gas environment when materials are ignited in the premises. The subject is the features of the average bicoherence of the frequencies of the spectra of changes in the hazardous parameters of the gas environment when materials are ignited. The importance of such studies is based on the fact that the examined features can be used for the early detection of fires. The value of the average bicoherence is proposed to be determined for each frequency, taking into account the average value of the cosine argument of the complex bispectrum for a given frequency interval. It was established that the values of the average bicoherence of the spectrum of changes in the temperature of the gaseous medium in the interval of no ignition of the materials, averaged by frequency in the range of 0–2 Hz, lie in the range from ‒0.052 to ‒0.35. At the same time, the frequency-averaged values of mean bicoherence at the ignition interval of materials lie in the range of ‒0.128 to +0.155. Averaged in the frequency range of 0–2 Hz, the value of the mean bicoherence of the spectrum of changes in smoke density in the interval of absence of ignition of materials lies in the range from ‒0.018 to +0.568. In the presence of fires, this value is in the range from –0.244 to +0.23. At the same time, the average value of the average bicoherence of the spectrum of changes in the concentration of carbon monoxide of the gas medium for test materials, averaged in the range from 0 to 2 Hz, ranges from +0.016 to +0.109. In the case of ignition of materials, the average values range from +0.0007 to +0.053, except for ignition of wood (+0.117). In general, the revealed features of the average bicoherence of the frequency components of the spectra of changes in the hazardous parameters of the gas environment indicate the possibility of their use to identify fires and prevent fires

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Vladimir Andronov, National University of Civil Defence of Ukraine

 

Doctor of Technical Sciences, Professor

Research Center

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Research Center

Larysa Chubko, National Aviation University

PhD, Associate Professor

Department of Biotechnology

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Svitlana Gordiichuk, Zhytomyr Medical Institute

Doctor of Pedagogic Sciences

Department of Natural and Social-Humanitarian Disciplines

Tatiana Lutsenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Nataliia Suriadna, Melitopol Institute of Ecology and Social Technologies, University of “Ukraine”

PhD, Associate Professor

Department of Ecology and Information Technology

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD

Department of Geography and Tourism

Tetyana Kushchova, Mykolayiv National Agrarian University

PhD

Research Center

References

  1. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: https://doi.org/10.15587/1729-4061.2017.85847
  2. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  3. Popov, O., Іatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2018). Conceptual Approaches for Development of Informational and Analytical Expert System for Assessing the NPP impact on the Environment. Nuclear and Radiation Safety, 3 (79), 56–65. doi: https://doi.org/10.32918/nrs.2018.3(79).09
  4. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  5. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  6. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/nrs.2019.4(84).11
  7. Vambol, V., Vambol, S., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 87 (2), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
  8. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865
  9. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: https://doi.org/10.1051/e3sconf/201912301012
  10. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654
  11. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  12. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  13. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
  14. Rybalova, O., Artemiev, S., Sarapina, M., Tsymbal, B., Bakharevа, A., Shestopalov, O., Filenko, O. (2018). Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 4–17. doi: https://doi.org/10.15587/1729-4061.2018.127829
  15. World Fire Statistics (2022). No. 27. CTIF, 65. Available at: https://www.ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG.pdf
  16. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.179
  17. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  18. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  19. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  20. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
  21. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
  22. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131–136.
  23. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. JCST, 9, 139.
  24. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  25. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  26. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  27. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  28. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  29. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  30. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  31. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  32. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  33. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Vol. 1. National Institute of Standard and Technology.
  34. Polstiankin, R. M., Pospelov, B. B. (2015). Stochastic models of hazardous factors and parameters of a fire in the premises. Problemy pozharnoy bezopasnosti, 38, 130–135. Available at: http://nbuv.gov.ua/UJRN/Ppb_2015_38_24
  35. Heskestad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. doi: https://doi.org/10.1016/0379-7112(92)90024-7
  36. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et al. (2002). Prototype Early Warning Fire Detection System: Test Series 4 Results. NRL/MR/6180–02–8602. Naval Research Laboratory. Available at: https://apps.dtic.mil/sti/pdfs/ADA399480.pdf
  37. Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevska, O., Butenko, T. et al. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 4 (10 (118)), 60–66. doi: https://doi.org/10.15587/1729-4061.2022.263194
  38. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. doi: https://doi.org/10.15587/1729-4061.2022.265781
  39. Pospelov, B., Bezuhla, Y., Yashchenko, O., Khalmuradov, B., Petukhova, O., Gornostal, S. et al. (2022). Revealing the features of the third order phase spectrum of the main dangerous parameters of the gas medium. Eastern-European Journal of Enterprise Technologies, 6 (10 (120)), 63–70. doi: https://doi.org/10.15587/1729-4061.2022.268437
  40. Pasport. Spovishchuvach pozhezhnyi teplovyi tochkovyi. Arton. Available at: https://ua.arton.com.ua/files/passports/%D0%A2%D0%9F%D0%A2-4_UA.pdf
  41. Pasport. Spovishchuvach pozhezhnyi dymovyi tochkovyi optychnyi. Arton. Available at: https://ua.arton.com.ua/files/passports/spd-32_new_pas_ua.pdf
  42. Optical/Heat Multisensor Detector (2019). Discovery. Available at: https://www.nsc-hellas.gr/pdf/APOLLO/discovery/B02704-00%20Discovery%20Multisensor%20Heat-%20Optical.pdf
  43. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology. Available at: https://www.fse-italia.eu/PDF/ManualiFDS/FDS_Validation_Guide.pdf
  44. Saeed, M., Alfatih, S. (2013). Nonlinearity detection in hydraulic machines utilizing bispectral analysis. TJ Mechanical engineering and machinery, 13–21. Available at: http://eprints.utm.my/id/eprint/42178/
  45. Yang, K., Zhang, R., Chen, S., Zhang, F., Yang, J., Zhang, X. (2015). Series Arc Fault Detection Algorithm Based on Autoregressive Bispectrum Analysis. Algorithms, 8 (4), 929–950. doi: https://doi.org/10.3390/a8040929
  46. Yang, B., Wang, M., Zan, T., Gao, X., Gao, P. (2021). Application of Bispectrum Diagonal Slice Feature Analysis in Tool Wear States Monitoring. Research Square. doi: https://doi.org/10.21203/rs.3.rs-775113/v1
  47. Chua, K. C., Chandran, V., Acharya, U. R., Lim, C. M. (2010). Application of higher order statistics/spectra in biomedical signals – A review. Medical Engineering & Physics, 32 (7), 679–689. doi: https://doi.org/10.1016/j.medengphy.2010.04.009
  48. Chua, K. C., Chandran, V., Acharya, U. R., Lim, C. M. (2008). Cardiac state diagnosis using higher order spectra of heart rate variability. Journal of Medical Engineering & Technology, 32 (2), 145–155. doi: https://doi.org/10.1080/03091900601050862
  49. Cui, L., Xu, H., Ge, J., Cao, M., Xu, Y., Xu, W., Sumarac, D. (2021). Use of Bispectrum Analysis to Inspect the Non-Linear Dynamic Characteristics of Beam-Type Structures Containing a Breathing Crack. Sensors, 21 (4), 1177. doi: https://doi.org/10.3390/s21041177
  50. Martín-Montero, A., Gutiérrez-Tobal, G. C., Kheirandish-Gozal, L., Jiménez-García, J., Álvarez, D., del Campo, F. et al. (2020). Heart rate variability spectrum characteristics in children with sleep apnea. Pediatric Research, 89 (7), 1771–1779. doi: https://doi.org/10.1038/s41390-020-01138-2
  51. Max, J. (1981). Principes generaus et methods classiques. Vol. 1. Paris, 311.
  52. Mohankumar, K. (2015). Implementation of an underwater target classifier using higher order spectral features. Cochin.
  53. Nikias, C. L., Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75 (7), 869–891. doi: https://doi.org/10.1109/proc.1987.13824
Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire

Downloads

Published

2023-02-27

How to Cite

Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S., Lutsenko, T., Suriadna, N., Hryshko, S., & Kushchova, T. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1(10 (121), 46–54. https://doi.org/10.15587/1729-4061.2023.272949