Forming an elliptical directional diagram of the sectoral horn antenna for flow irradiation of sugar beet seeds by electromagnetic field

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.273972

Keywords:

low-energy electromagnetic radiation, electromagnetic field emitter, horn antenna, H-sectoral antenna, directional diagram, sugar beet seeds, presowing treatment

Abstract

The object of research is the process that forms an elliptical directional diagram of the H-sector horn antenna for flow irradiation of seeds with the electromagnetic field.

The emitter of electromagnetic energy is presented as one of the main elements of installations for irradiating seeds with an electromagnetic field before sowing. This parameter was investigated by taking into account the values of the biotropic parameters of the low-energy electromagnetic field under the conditions of flow processing.

This paper reports a study into the parameters of the H-sector horn emitter for irradiation of sugar beet seeds with a low-energy electromagnetic field at a frequency of 73...75 GHz in continuous flow. Thus, one should use the H-sectoral horn emitter with the following parameters: aperture width aa=20 mm; horn length RH=35 mm; b=1.8 mm. It is determined that in order to irradiate sugar beet seeds on the conveyor plane with a power flow density of P=100 μW/cm2, it is necessary to place two horns 1200 mm above the conveyor at a distance of 2540 mm from each other. It was checked that the treatment of sugar beet seeds with electromagnetic radiation in a continuous flow with a capacity of 300 kg/h is possible with a power of up to 2 W supplied to two horn antennas; the speed of the conveyor is 15 cm/s.

The parameters of the sectoral horn for an elliptical directional diagram were studied by dividing the main task into internal and external.

According to the results of the research, it is possible to build a base of geometric presets for adjusting installations for different types of seeds, the desired performance, the structural features of installations, as well as existing emitters

Author Biographies

Natalia Kosulina, State Biotechnological University

Doctor of Technical Sciences, Professor

Department of Electromechanics, Robotics, Biomedical Engineering and Electrical Engineering

Maksym Sorokin, State Biotechnological University

PhD

Department of Electromechanics, Robotics, Biomedical Engineering and Electrical Engineering

Yuri Handola, State Biotechnological University

PhD

Department of Electromechanics, Robotics, Biomedical Engineering and Electrical Engineering

Stanislav Kosulin, Kharkiv Medical Academy of Postgraduate Education

PhD

Department of Oncosurgery, Radiation Therapy and Palliative Care

Kostiantyn Korshunov, State Biotechnological University

Postgraduate Student

Department of Electromechanics, Robotics, Biomedical Engineering and Electrical Engineering

References

  1. Huyghe, C., Desprez, B., Laudinat, V. (2020). Sugar beet. Quae. doi: https://doi.org/10.35690/978-2-7592-3185-0
  2. Hruzynska, I., Smahina, A., Airapetov, M., Zhyhadlo, V. (2018). Zelena knyha "Rehuliuvannia rynku tsukru". Ofis efektyvnoho rehuliuvannia. Available at: https://issuu.com/office_brdo/docs/_______________________?utm_medium=referral&utm_source=regulation.gov.ua
  3. Abbott, G. C. (2020). Sugar. Routledge, 414. doi: https://doi.org/10.4324/9781003292203
  4. Fyliuk, G., Sytenko, D. (2014). Causes of crisis situation in Ukraine sugar industry enterprises and their solutions. Bulletin of Taras Shevchenko National University of Kyiv. Economics, 158, 6–11. Available at: http://bulletin-econom.univ.kiev.ua/wp-content/uploads/2015/11/158_6-11.pdf
  5. Smit, A. B., Jongeneel, R. A., Prins, H., Jager, J. H., Hennen, W. H. G. J. (2017). Impact of coupled EU support for sugar beet growing: more production, lower prices. Wageningen Economic Research. doi: https://doi.org/10.18174/430039
  6. Mitchell, D. (2004). Sugar Policies: Opportunity for Change. Washington.
  7. Kosulina, N. G., Cherenkov, A. D. (2008). Low-energy electromagnetic technologies are in plantgrower. Svitlotekhnika ta elektroenerhetyka, 4, 80–85. Available at: http://eprints.kname.edu.ua/8430/1/80-85.pdf
  8. Chernaya, M. A., Kosulina, N. G., Avrunin, O. G. (2013). Analiz problem predposevnoy obrabotki semyan na osnove elektromagnitnykh tekhnologiy. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva im. Petra Vasylenka, 141, 93–94.
  9. Tanaś, J., Cherenkov, A. D., Kosulina, N. G., Yaroslavskyy, Y. I., Titova, N. V., Aizhanova, A. (2018). Justification of the electromagnetic impulse method destruction of insect pests in gardens. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018. doi: https://doi.org/10.1117/12.2501665
  10. Mуkhaylova, L., Ryd, A., Potapski, P., Kosulina, N., Cherenkov, A. (2018). Determining the electromagnetic field parameters to kill flies at livestock facilities. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 53–60. doi: https://doi.org/10.15587/1729-4061.2018.137600
  11. Kosulina, N., Kosulin, S. (2022). Determination of biotropic parameters of a pulsed electric field for increasing i mmunoglobulins in cow coloster. Sciences of Europe, 103, 90–93.
  12. Kosulina, N., Kosulin, S. (2022). Аpplication of low-energy radio-wave emissions in medicine and animal husbandry. The scientific heritage, 99, 22–25. Available at: https://ru.calameo.com/read/00505976992f912ada90e
  13. Uğurlu, B. T. (2022). On the wave nature of particles. Physics Essays, 35 (2), 171–174. doi: https://doi.org/10.4006/0836-1398-35.2.171
  14. Rossing, T. D., Chiaverina, C. J. (2019). The Wave Nature of Light. Light Science, 25–49. doi: https://doi.org/10.1007/978-3-030-27103-9_2
  15. Kuchin, L. F., Cherenkov, A. D., Kosulina, N. G. (2002). Znachenie strukturnoy organizatsii bioobektov pri vzaimodeystvii s nizkoenergeticheskimi polyarizovannymi elektromagnitnymi polyami. Pratsi. Tavriyska derzhavna ahrotekhnichna akademiya, 6, 26–29.
  16. Kosulina, N. H. (2003). Vykorystannia mikrokhvylovykh tekhnolohiy u silskomu hospodarstvi. Pratsi. Tavriyska derzhavna ahrotekhnichna akademiya, 15, 141–148.
  17. Cherenkov, A. D., Kosulina, N. G. (2005). Primenenie informatsionnykh elektromagnitnykh poley v tekhnologicheskikh protsessakh sel'skogo khozyaystva. Svitlotekhnika ta elektroenerhetyka, 5, 77–80.
  18. Kosulina, N. H., Cherenkov, O. D. (2005). Doslidzhennia vplyvu elektromahnitnoho polia na nasinnia soi. Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva, 37 (1), 152–160.
  19. Kosulina, N. G. (2006). Opredelenie diapazona izmeneniy parametrov elektromagnitnogo polya, vozdeystvuyuschikh na semena soi. Tavriyska derzhavna ahrotekhnichna akademiya. Pratsi, 35, 102–105.
  20. Popriadukhin, V., Popova, I., Kosulina, N., Cherenkov, A., Chorna, M. (2017). Analysis of the electromagnetic field of multilayered biological objects for their irradiation in a waveguide system. Eastern-European Journal of Enterprise Technologies, 6 (5 (90)), 58–65. doi: https://doi.org/10.15587/1729-4061.2017.118159
  21. Konstantinov, I. S., Mamatov, A. V., Sapryka, V. A., Sapryka, A. V., Kosulina, N. G. (2015). Theoretical analysis of electromagnetic field electric tension distribution in the seeds of cereals. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6 (6), 1686–1694.
  22. Olenyuk, A. A. (2013). Calculation of EMF resonance frequency for presowing processing of sugar beet seeds. Eastern-European Journal of Enterprise Technologies, 1 (9 (61)), 13–16. Available at: http://journals.uran.ua/eejet/article/view/9494
  23. Olenyuk, A. A. (2012). Opredelenie rezonansnoy chastoty EMP dlya vozdeystviya na semena sfericheskoy formy. Visnyk natsionalnoho tekhnichnoho universytetu «KhPI», 66 (972), 173–177.
  24. Cherenkov, A. D., Kosulina, N. G., Sereda, A. I. (2004). Analiz rozpodilu elektromahnitnoho polia formovanoho antennymy prystroiamy dlia vplyvu na biolohichni obiekty. Visnyk Kharkivskoho derzhavnoho tekhnichnoho universytetu silskoho hospodarstva, 27 (1), 238–245.
  25. Josefsson, L., Rengarajan, S. (Eds.) (2018). Slotted waveguide array antennas: theory, analysis and design. The Institution of Engineering and Technology, 400.
  26. Yang, F., Rahmat-Samii, Y. (2008). Surface wave antennas. Electromagnetic Band Gap Structures in Antenna Engineering, 203–237. doi: https://doi.org/10.1017/cbo9780511754531.008
  27. Kobayashi, H. (2020). Horn Antenna. Analyzing the Physics of Radio Telescopes and Radio Astronomy, 144–177. doi: https://doi.org/10.4018/978-1-7998-2381-0.ch008
  28. Kosulina, N. G., Korshunov, K. S. (2021). Calculation of a specialized antenna for biological research. Engineering of nature management, 22, 99–103. Available at: https://repo.btu.kharkov.ua/bitstream/123456789/1211/1/16.pdf
  29. Volakis, J. L. (2019). Antenna engineering handbook. McGraw Hill, 1424.
  30. Waterhouse, R. B. (2005). Traveling Wave Antennas. Encyclopedia of RF and Microwave Engineering. doi: https://doi.org/10.1002/0471654507.eme466
  31. Chand, R. K., Raghavendra, M. V., Sathyavathi, K. (2013). Radiation Analysis and Design of Pyramidal Horn Antenna. International Journal Of Engineering Research & Technology (IJERT), 2 (10). Available at: https://www.ijert.org/research/radiation-analysis-and-design-of-pyramidal-horn-antenna-IJERTV2IS100033.pdf
  32. Hirokawa, J., Zhang, M. (2015). Waveguide Slot Array Antennas. Handbook of Antenna Technologies, 1–21. doi: https://doi.org/10.1007/978-981-4560-75-7_51-1
  33. Balanis, C. A. (2016). Antenna Theory: Analysis and Design. Hoboken. John Wiley and Sons, 1104.
  34. Kildal, P.-S. (2015). Foundations of antenna engineering: a unified approach for line-of-sight and multipath. Artech.
  35. Olver, A. D. (1992). Microwave and Optical Transmission. Wiley, 400.
  36. Kong, J. A. (1994). Electromagnetic Wave Theory. Wiley.
  37. Towne, D. H. (1998). Wave Phenomena. Dover Publications.
  38. Elmore, W. C., Heald, M. A. (1995). Physics of Waves. Dover Publications.
  39. Wieglhofer, W. S., Lakhtakia, A. (Eds.) (2003). Introduction to Complex Mediums for Optics and Electromagnetics. SPIE. doi: https://doi.org/10.1117/3.504610
  40. Yanke, E. (1994). Spetsial'nye funktsii (Formuly, grafiki, tablitsy). Kyiv: Naukova dumka, 344.
  41. Dass, H. K. (2007). Advanced Engineering Mathematics. ‎S Chand & Co Ltd, 1136.
  42. Godon Webster, A. (2016). Partial Differential Equations of Mathematical Physics. Dover Publications, 464.
  43. Riley, K. F., Hobson, M., P. Bence, S. J. (2012). Mathematical Methods for Physics and Engineering. Cambridge University Press, 1333. doi: https://doi.org/10.1017/cbo9781139164979
  44. Freeden, W., Gutting, M. (2013). Special Functions of Mathematical (Geo-)Physics. Springer, 501. doi: https://doi.org/10.1007/978-3-0348-0563-6
  45. Kalinin, L. H., Moiseev, V. F., Malinovskyi, V. V. (2006). Pat. No. 19550 UA. Microwave device for presowing seed treatment. No. u200607446; declareted: 04.07.2006; published: 15.12.2006. Available at: https://uapatents.com/2-19550-mikrokhvilovijj-pristrijj-peredposivno-obrobki-nasinnya.html
  46. Dziuba, V. P., Kalinin, L. H., Tuchnyi, V. P., Tokovenko, O. M. (2003). Pat. No. 53954 UA. Microwave device for presowing seed treatment. No. 2002032451; declareted: 28.03.2002; published: 17.02.2003. Available at: https://uapatents.com/2-53954-mikrokhvilovijj-pristrijj-doposivno-obrobki-nasinnya.html
  47. Sydoruk, Y. K. (2011). Pat. No. 65629 UA. Microwave device for presowing seed treatment, drying grain and other loose materials. No. u201106351; declareted: 20.05.2011; published: 12.12.2011. Available at: https://uapatents.com/4-65629-mikrokhvilovijj-pristrijj-dlya-peredposivno-obrobki-nasinnya-sushinnya-zerna-ta-inshikh-sipuchikh-materialiv.html
Forming an elliptical directional diagram of the sectoral horn antenna for flow irradiation of sugar beet seeds by electromagnetic field

Downloads

Published

2023-02-28

How to Cite

Kosulina, N., Sorokin, M., Handola, Y., Kosulin, S., & Korshunov, K. (2023). Forming an elliptical directional diagram of the sectoral horn antenna for flow irradiation of sugar beet seeds by electromagnetic field. Eastern-European Journal of Enterprise Technologies, 1(5 (121), 26–37. https://doi.org/10.15587/1729-4061.2023.273972

Issue

Section

Applied physics