Development of information and analytical procurement methodology of public administration in the sphere of providing civil control over the sector of security and defense of Ukraine

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.274257

Keywords:

vague cognitive models, civilian control over the security and defense sector of Ukraine

Abstract

The problem that is solved in the research is to increase the efficiency of decision making in management tasks while ensuring the given reliability, regardless of the hierarchy of the system. The object of the research is the decision making support system in the field of democratic civilian control over the security and defense sector (FDCCSDS). The subject of research is the decision making process in management tasks using fuzzy cognitive maps and evolving artificial neural networks. The hypothesis of the research is to increase the number of sources of information about the components of the FDCCSDS, with restrictions on the efficiency and reliability of decision making. The research proposed a method for evaluating the information and analytical provision of public administration in FDCCSDS. It was established that the proposed method has a higher efficiency compared to the known ones by an average of 40 %, compared to the methods used to evaluate the effectiveness of strategic management decisions. The specified method will make it possible to assess the state of information and analytical provision of public administration in the FDCCSDS and to determine effective measures to improve efficiency. The method will allow to analyze possible options for the development of FDCCSDS in each phase of development and moments in time when it is necessary to carry out structural changes that ensure the transition to the next phase. At the same time, subjective factors of choice are taken into account while searching for solutions, which are formalized in the form of weighting coefficients for the components of the integral criterion of efficiency. The specified method allows to increase the speed of assessment of the state of information and analytical support of the FDCCSDS, to reduce the use of computing resources of and decision making support systems, to form measures aimed at increasing the efficiency of information and analytical support

Author Biographies

Olha Salnikova, General Directorate of Military Cooperation Ukrainian Armed Forces

Doctor of Science in Public Administration, Senior Researcher, Deputy Chief

Rena Marutian, Taras Shevchenko National University of Kyiv

Doctor of Science in Public Administration, Associate Professor

Department of Global and National Security

Educational and Scientific Institute of Public Administration and Civil Service

Oleksandr Vereschak, O.M. Beketov National University of Urban Economy in Kharkiv

Postgraduate Student

References

  1. Rodionov, M. A. (2010). Informatsionno-analiticheskoe obespechenie upravlencheskikh resheniy. Moscow, 400.
  2. Drozdiuk, V. (2021). Democratic civilian control for the national security and defence sector. Law and Public Administration, 1, 202–208. doi: https://doi.org/10.32840/pdu.2021.1.30
  3. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, 287.
  4. Bellman, R. E., Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17 (4), B-141–B-164. doi: https://doi.org/10.1287/mnsc.17.4.b141
  5. Mamdani, E. H., Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7 (1), 1–13. doi: https://doi.org/10.1016/s0020-7373(75)80002-2
  6. Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science Pub. Co., 269.
  7. Fuller, R. (1995). Neural Fuzzy Systems. Abo Akademi University, 348. Available at: https://uni-obuda.hu/users/fuller.robert/ln1.pdf
  8. Onykiy, B., Artamonov, A., Ananieva, A., Tretyakov, E., Pronicheva, L., Ionkina, K., Suslina, A. (2016). Agent Technologies for Polythematic Organizations Information-Analytical Support. Procedia Computer Science, 88, 336–340. doi: https://doi.org/10.1016/j.procs.2016.07.445
  9. Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
  10. Xing, W., Goggins, S., Introne, J. (2018). Quantifying the Effect of Informational Support on Membership Retention in Online Communities through Large-Scale Data Analytics. Computers in Human Behavior, 86, 227–234. doi: https://doi.org/10.1016/j.chb.2018.04.042
  11. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  12. Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
  13. Ballester-Caudet, A., Campíns-Falcó, P., Pérez, B., Sancho, R., Lorente, M., Sastre, G., González, C. (2019). A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TrAC Trends in Analytical Chemistry, 118, 538–547. doi: https://doi.org/10.1016/j.trac.2019.06.015
  14. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  15. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  16. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  17. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  18. Rybak, V. A., Shokr, A. (2016). Analysis and comparison of existing decision support technology. System analysis and applied information science, 3, 12–18. Available at: https://sapi.bntu.by/jour/article/view/114?locale=ru_RU
  19. Rodionov, M. A. (2014). Problems of information and analytical support of contemporary strategic management. Civil Aviation High Technologies, 202, 65–69.
  20. Bednář, Z. (2018). Information Support of Human Resources Management in Sector of Defense. Vojenské rozhledy, 27 (1), 45–68.
  21. Palchuk, V. (2017). Methods of Content-Monitoring and Content-Analysis of Information Flows: Modern Features. Naukovi pratsi Natsionalnoi biblioteky Ukrainy imeni V. I. Vernadskoho, 48, 506–526. Available at: http://nbuv.gov.ua/UJRN/npnbuimviv_2017_48_39
  22. Mir, S. A., Padma, T. (2016). Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP). Spanish Journal of Agricultural Research, 14 (4), e0909. doi: https://doi.org/10.5424/sjar/2016144-8699
  23. Alieinykov, I. V. (2018). Analiz faktoriv, shcho vplyvaiut na operatyvnist protsesu zboru, obrobky i peredachi informatsiyi pro protyvnyka pid chas pidhotovky ta vedennia oboronnoi operatsiyi operatyvnoho uhrupuvannia viysk. XVIII naukovo-tekhnichnoi konferentsiyi Stvorennia ta modernizatsiya ozbroiennia i viyskovoi tekhniky v suchasnykh umovakh. Chernihiv, 38–40. Available at: http://dintem.com.ua/images/site/tezy_izdaniy/zb_rnik_tez_2018.pdf
  24. Alieinykov, I. V., Zhyvotovskyi, R. M. (2018). Udoskonalennia informatsiino-analitychnoho zabezpechennia za rakhunok formuvannia intehrovanoi informatsiynoi systemy upravlinnia viyskamy. Zbirnyk materialiv VI mizhnarodnoi naukovo-praktychnoi konferentsiyi Problemy koordynatsiyi voienno-tekhnichnoi ta oboronno-promyslovoi polityky v Ukraini. Perspektyvy rozvytku ozbroiennia ta viiskovoi tekhniky. Kyiv, 165–166. Available at: https://mon.gov.ua/storage/app/media/innovatsii-transfer-tehnologiy/publikatsiyi/vi-mizhnarodna-naukovo-praktichna-konferentsiya-tezi-dopovidey.pdf
  25. Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
  26. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  27. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  28. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  29. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  30. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  31. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
Development of information and analytical procurement methodology of public administration in the sphere of providing civil control over the sector of security and defense of Ukraine

Downloads

Published

2023-02-28

How to Cite

Salnikova, O., Marutian, R., & Vereschak, O. (2023). Development of information and analytical procurement methodology of public administration in the sphere of providing civil control over the sector of security and defense of Ukraine. Eastern-European Journal of Enterprise Technologies, 1(3 (121), 57–65. https://doi.org/10.15587/1729-4061.2023.274257

Issue

Section

Control processes