Determining loading patterns in the bearing structure of a railroad flatcar with a floor made from sandwich panels

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.278267

Keywords:

railroad car, sandwich panel, dynamic loading of the railroad car, strength of frame structure, safety of goods

Abstract

The object of research is the processes of emergence, perception, and redistribution of loads in the supporting structure of a flatcar with a floor made of sandwich panels.

To reduce the impact of dynamic loads on the supporting structure of a flatcar, as well as the safety of goods transported in it, it is proposed to manufacture floors from sandwich panels.

Within the framework of the study, mathematical modeling of the dynamic load on a flatcar when it runs in a loaded state was carried out. It was found that, taking into account the proposed solution, the accelerations acting on the supporting structure of a flatcar are reduced by 8.4 % compared to the typical one. At the same time, accelerations acting on cargo placed on a flatbed car are reduced by 11.7 %. The results of calculating the strength of sandwich panels, when arranged on a flatcar, proved the feasibility of the proposed improvement. The main indicators of dynamics of the improved flatcar structure operated in an empty state were determined. It was established that the flatcar movement is assessed as "good".

A feature of the results reported here is that the improved supporting structure of a flatcar contributes not only to reducing its dynamic load but also to improving the safety of transported cargoes.

The scope of practical application of the results is the engineering industry, in particular, railroad transport. The condition for the practical application of the research results is the use of energy-absorbing material in the structure of sandwich panels.

The study could contribute to devising recommendations regarding the design of modern structures of railroad vehicles and increasing the efficiency of the functioning of the transportation industry

Author Biographies

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Associate Professor

Department of Wagon Engineering and Product Quality

Volodymyr Nerubatskyi, Ukrainian State University of Railway Transport

PhD, Associate Professor

Department of Electrical Power Engineering, Electrical Engineering and Electromechanics

Andrii Okorokov, Ukrainian State University of Science and Technologies

PhD, Associate Professor

Department of Management of Operational Work

Roman Vernyhora, Ukrainian State University of Science and Technologies

PhD, Associate Professor

Department  of Transport Junctions

Iryna Zhuravel, Ukrainian State University of Science and Technologies

PhD, Associate Professor

Department of Management of Operational Work

References

  1. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Adaptive Modulation Frequency Selection System in Power Active Filter. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess57819.2022.9969261
  2. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Improving the energy efficiency of traction power supply systems by means the implementation of alternative power sources. Transport Means 2022. Part I. Proceedings of the 26th International Scientific Conference, 459–464. Available at: https://www.ebooks.ktu.lt/eb/1610/transport-means-2022-part-i-proceedings-of-the-26th-international-scientific-conference/
  3. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Efficiency Analysis of DC-DC Converter with Pulse-Width and Pulse-Frequency Modulation. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano54667.2022.9926762
  4. Lewandowski, K. (2006). Nadwozia wymienne (swap body) w bezterminalowym systemie transportu szynowego. Sistemy transportowe, 6, 53–55. Available at: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-1398-5437/c/Lewandowski.pdf
  5. Chuan-jin, O., Bing-tao, L. (2020). Research and application of new multimodal transport equipment-swap bodies in China. E3S Web of Conferences, 145, 02001. doi: https://doi.org/10.1051/e3sconf/202014502001
  6. Šťastniak, P., Kurčík, P., Pavlík, A. (2018). Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences, 235, 00030. doi: https://doi.org/10.1051/matecconf/201823500030
  7. Dižo, J., Blatnický, M., Steišūnas, S., Skočilasová, B. (2018). Assessment of a rail vehicle running with the damaged wheel on a ride comfort for passengers. MATEC Web of Conferences, 157, 03004. doi: https://doi.org/10.1051/matecconf/201815703004
  8. Harak, S. S., Sharma, S. C., Harsha, S. P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Materials Science, 6, 1891–1898. doi: https://doi.org/10.1016/j.mspro.2014.07.221
  9. Fomin, O., Gorbunov, M., Lovska, A., Gerlici, J., Kravchenko, K. (2021). Dynamics and Strength of Circular Tube Open Wagons with Aluminum Foam Filled Center Sills. Materials, 14 (8), 1915. doi: https://doi.org/10.3390/ma14081915
  10. Pɫaczek, M., Wróbel, A., Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. doi: https://doi.org/10.1088/1757-899x/161/1/012107
  11. Lee, H.-A., Jung, S.-B., Jang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (4), 1283–1296. doi: https://doi.org/10.1177/0954409715593971
  12. Al-Sukhon, A., ElSayed, M. S. (2021). Design optimization of hopper cars employing functionally graded honeycomb sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236 (8), 920–935. doi: https://doi.org/10.1177/09544097211049640
  13. Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
  14. Jeong, D. Y., Tyrell, D. C., Carolan, M. E., Perlman, A. B. (2009). Improved Tank Car Design Development: Ongoing Studies on Sandwich Structures. 2009 Joint Rail Conference. doi: https://doi.org/10.1115/jrc2009-63025
  15. Street, G. E., Mistry, P. J., Johnson, M. S. (2021). Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons. Journal of Composites Science, 5 (6), 152. doi: https://doi.org/10.3390/jcs5060152
  16. Wróbel, A., Płaczek, M., Buchacz, A. (2017). An Endurance Test of Composite Panels. Solid State Phenomena, 260, 241–248. doi: https://doi.org/10.4028/www.scientific.net/ssp.260.241
  17. Fomin, O., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Determination of the Loading of a Flat Rack Container during Operating Modes. Applied Sciences, 11 (16), 7623. doi: https://doi.org/10.3390/app11167623
  18. Panchenko, S., Vatulia, G., Lovska, A., Ravlyuk, V., Elyazov, I., Huseynov, I. (2022). Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA: Physics and Engineering, 6, 45–55. doi: https://doi.org/10.21303/2461-4262.2022.002638
  19. Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky vahoniv. Kyiv: KUETT, 269.
  20. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. doi: https://doi.org/10.3390/app13010079
  21. Zadachyn, V. M., Koniushenko, I. H. (2014). Chyselni metody. Kharkiv, 180. Available at: http://kist.ntu.edu.ua/textPhD/CHM_Zadachin.pdf
  22. Hoi, T. P., Makhnei, O. V. (2012). Dyferentsialni rivniannia. Ivano-Frankivsk, 352. Available at: https://kdrpm.pnu.edu.ua/wp-content/uploads/sites/55/2018/03/deinf_el.pdf
  23. Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108. Available at: https://library_donetsk19.donetskedu.com/uk/library/vstup-do-sistemi-mathcad-navchalnii-posibnik.html
  24. Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
  25. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  26. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  27. Iwnicki, S. D., Stichel, S., Orlova, A., Hecht, M. (2015). Dynamics of railway freight vehicles. Vehicle System Dynamics, 53 (7), 995–1033. doi: https://doi.org/10.1080/00423114.2015.1037773
  28. Yang, C., Li, F., Huang, Y., Wang, K., He, B. (2013). Comparative study on wheel–rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie. Journal of Modern Transportation, 21 (1), 1–8. doi: https://doi.org/10.1007/s40534-013-0001-3
  29. Bezukhov, N. I. (1957). Sbornik zadach po teorii upru gosti i plastichnosti. Moscow: Gosudartvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, 286.
  30. Lovska, A. (2014). Assessment of dynamic efforts to bodies of wagons at transportation with railway ferries. Eastern-European Journal of Enterprise Technologies, 3 (4 (69)), 36–41. doi: https://doi.org/10.15587/1729-4061.2014.24997
  31. Fomin, O., Lovska, A., Khara, M., Nikolaienko, I., Lytvynenko, A., Sova, S. (2022). Adapting the load-bearing structure of a gondola car for transporting high-temperature cargoes. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.253770
  32. Stoilov, V., Simić, G., Purgić, S., Milković, D., Slavchev, S., Radulović, S., Maznichki, V. (2019). Comparative analysis of the results of theoretical and experimental studies of freight wagon Sdggmrss-twin. IOP Conference Series: Materials Science and Engineering, 664 (1), 012026. doi: https://doi.org/10.1088/1757-899x/664/1/012026
  33. Kondratiev, A. V., Gaidachuk, V. E. (2021). Mathematical Analysis of Technological Parameters for Producing Superfine Prepregs by Flattening Carbon Fibers. Mechanics of Composite Materials, 57 (1), 91–100. doi: https://doi.org/10.1007/s11029-021-09936-3
  34. Vambol, O., Kondratiev, A., Purhina, S., Shevtsova, M. (2021). Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters. Eastern-European Journal of Enterprise Technologies, 2 (1 (110)), 70–80. doi: https://doi.org/10.15587/1729-4061.2021.227075
Determining loading patterns in the bearing structure of a railroad flatcar with a floor made from sandwich panels

Downloads

Published

2023-06-30

How to Cite

Lovska, A., Nerubatskyi, V., Okorokov, A., Vernyhora, R., & Zhuravel, I. (2023). Determining loading patterns in the bearing structure of a railroad flatcar with a floor made from sandwich panels. Eastern-European Journal of Enterprise Technologies, 3(7 (123), 6–13. https://doi.org/10.15587/1729-4061.2023.278267

Issue

Section

Applied mechanics