Valorization of cashew nut processing by-product: development of a cardol/starch biopolymer composite with electrochemical properties and technological potential

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.282208

Keywords:

cardol, cassava, biopolymer, electrochemistry, composite, waste, cashew, nut, shell, starch

Abstract

The problem of food agro-industry residues represents a growing concern in our society, therefore its use as a raw material to obtain biopolymers of technological interest is an attractive alternative. The objective of this work was to assess the viability of utilizing cardol, derived from cashew nut shell liquid, in the production of a biopolymer composite by combining it with cassava starch. The biopolymer composite was prepared by thermochemical method using different cardol concentrations and varying the synthesis pH. The results allowed us to demonstrate the formation of cardol/starch biopolymeric films. The infrared spectra showed possible interactions by hydrogen bonds between the cardol and the glucose units of the starch. The impedance behavior showed a similar conduction mechanism in all cases, allowing the establishment of a single equivalent circuit. The electrochemical parameters showed that the presence of cardol and the lower pH increased the values of the electrical resistance and the double layer capacitance in the biopolymers. In addition, the values of the CPE/Rre system, related to the electractivity, were not affected by the pH, but by the presence of cardol. The biodegradability tests showed a complete decomposition of the biopolymer composite films in three stages in a period of 17 to 19 days. It could be concluded that it is possible to use the cardol extracted from the cashew nut shell liquid to elaborate a biopolymer composite with electrochemical properties when combined with cassava starch. The electrical properties of the biopolymer can be modulated by varying the synthesis pH and the amount of cardol used. The composite cardol/starch biopolymer could be used as a biopolymeric solid electrolyte in the manufacture of batteries, capacitors, etc

Supporting Agency

  • Acknowledgment to Minciencias (Ministry of Science, Technology, and Innovation) for financing the project identified with BPIN 2020000100027 with resources from the SGR - General Royalties System. The collaboration of the association of cashew producers of the savannah (ASOPROMARSAB) is also appreciated for the supply of cashew nut shells.

Author Biographies

Alvaro Angel Arrieta, University of Sucre

Doctor in Advanced Chemistry, Professor

Department of Biology and Chemistry

Research Group in Development and Innovation in Advanced Materials

Jorge Alberto Ducuara, University of Sucre

Biologist, Master's student in Environmental Sciences

Research Group in Development and Innovation in Advanced Materials

Enrique Miguel Combatt, Universidad de Cordoba

Doctor en Ciencia de Suelos, Profesor

Department of Agricultural Engineering and Rural Development

References

  1. Arya, P. S., Yagnik, S. M., Rajput, K. N., Panchal, R. R., Raval, V. H. (2022). Valorization of agro-food wastes: Ease of concomitant-enzymes production with application in food and biofuel industries. Bioresource Technology, 361, 127738. doi: https://doi.org/10.1016/j.biortech.2022.127738
  2. Freitas, L. C., Barbosa, J. R., da Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H., Carvalho Junior, R. N. de. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169, 105466. doi: https://doi.org/10.1016/j.resconrec.2021.105466
  3. Topare, N. S., Bokil, S. A. (2021). Adsorption of textile industry effluent in a fixed bed column using activated carbon prepared from agro-waste materials. Materials Today: Proceedings, 43, 530–534. doi: https://doi.org/10.1016/j.matpr.2020.12.029
  4. Asiri, F., Chu, K.-H. (2022). Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. Chemosphere, 309, 136660. doi: https://doi.org/10.1016/j.chemosphere.2022.136660
  5. Paula, R. S. F., Vieira, R. S., Luna, F. M. T., Cavalcante, C. L., Figueredo, I. M., Candido, J. R. et al. (2020). A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach. Brazilian Journal of Chemical Engineering, 37 (2), 369–381. doi: https://doi.org/10.1007/s43153-020-00031-z
  6. Adekanbi, M. L., Olugasa, T. T. (2022). Utilizing cashew nut shell liquid for the sustainable production of biodiesel: A comprehensive review. Cleaner Chemical Engineering, 4, 100085. doi: https://doi.org/10.1016/j.clce.2022.100085
  7. Araujo, J. T. C. de, Martin-Pastor, M., Pérez, L., Pinazo, A., Sousa, F. F. O. de. (2021). Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. Journal of Molecular Liquids, 332, 115808. doi: https://doi.org/10.1016/j.molliq.2021.115808
  8. Yang, Y., Zhang, C., Han, Y., Weng, Y. (2022). Plasticizing and thermal stabilizing effect of bio‐based epoxidized cardanol esters on PVC. Polymers for Advanced Technologies, 34 (1), 181–194. doi: https://doi.org/10.1002/pat.5876
  9. Masood, S., Khan, S., Ghosal, A., Alam, M., Rana, D., Zafar, F., Nishat, N. (2023). Fabrication of cardanol (a phenolic lipid) based polyamine coatings for anti-corrosive applications. Progress in Organic Coatings, 174, 107304. doi: https://doi.org/10.1016/j.porgcoat.2022.107304
  10. De Andrade, J. R., Oliveira, S. N., Soares, J. B., Soares, S. A. (2017). The effect of cardanol-formaldehyde resin in the rheological properties of the asphalt binder. International Journal of Civil & Environmental Engineering, 17 (2), 1–10. Available at: https://repositorio.ufc.br/handle/riufc/37355
  11. Preethi, R., Moses, J. A., Anandharamakrishnan, C. (2021). Development of anacardic acid incorporated biopolymeric film for active packaging applications. Food Packaging and Shelf Life, 28, 100656. doi: https://doi.org/10.1016/j.fpsl.2021.100656
  12. Liu, Z., Chen, J., Knothe, G., Nie, X., Jiang, J. (2016). Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. ACS Sustainable Chemistry & Engineering, 4 (3), 901–906. doi: https://doi.org/10.1021/acssuschemeng.5b00991
  13. Makwana, K., Ichake, A. B., Valodkar, V., Padmanaban, G., Badiger, M. V., Wadgaonkar, P. P. (2022). Cardol: Cashew nut shell liquid (CNSL) - derived starting material for the preparation of partially bio-based epoxy resins. European Polymer Journal, 166, 111029. doi: https://doi.org/10.1016/j.eurpolymj.2022.111029
  14. Yuliana, M., Nguyen-Thi, B. T., Faika, S., Huynh, L. H., Soetaredjo, F. E., Ju, Y.-H. (2014). Separation and purification of cardol, cardanol and anacardic acid from cashew (Anacardium occidentale L.) nut-shell liquid using a simple two-step column chromatography. Journal of the Taiwan Institute of Chemical Engineers, 45 (5), 2187–2193. doi: https://doi.org/10.1016/j.jtice.2014.07.012
  15. Lv, J., Liu, Z., Zhang, J., Huo, J., Yu, Y. (2017). Bio-based episulfide composed of cardanol/cardol for anti-corrosion coating applications. Polymer, 121, 286–296. doi: https://doi.org/10.1016/j.polymer.2017.06.036
  16. Paiva Filho, J. C., Morais, S. M. de, Nogueira Sobrinho, A. C., Cavalcante, G. S., Silva, N. A. da, Abreu, F. O. M. da S. (2019). Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery. Polímeros, 29 (4). doi: https://doi.org/10.1590/0104-1428.08118
  17. Xie, J., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C., Ban, X. (2023). Highland Barley Starch: Structures, Properties, and Applications. Foods, 12 (2), 387. doi: https://doi.org/10.3390/foods12020387
  18. Tafa, K. D., Satheesh, N., Abera, W. (2023). Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon, 9 (2), e13160. doi: https://doi.org/10.1016/j.heliyon.2023.e13160
  19. Núñez D, Y. E., Arrieta A, Á. A., Segura B, J. A., Bertel H, S. D. (2016). Synthesis of an air-working trilayer artificial muscle using a conductive cassava starch biofilm (manihot esculenta, cranz) and polypyrrole (PPy). Journal of Physics: Conference Series, 687, 012042. doi: https://doi.org/10.1088/1742-6596/687/1/012042
  20. Thieme, M., Hochmuth, A., Ilse, T. E., Cuesta-Seijo, J. A., Stoma, S., Meier, R. et al. (2023). Detecting variation in starch granule size and morphology by high-throughput microscopy and flow cytometry. Carbohydrate Polymers, 299, 120169. doi: https://doi.org/10.1016/j.carbpol.2022.120169
  21. Bangar, S. P., Scott Whiteside, W., Suri, S., Barua, S., Phimolsiripol, Y. (2022). Native and modified biodegradable starch‐based packaging for shelf‐life extension and safety of fruits/vegetables. International Journal of Food Science & Technology, 58 (2), 862–870. doi: https://doi.org/10.1111/ijfs.16219
  22. Guru, P. R., Kar, R. K., Nayak, A. K., Mohapatra, S. (2023). A comprehensive review on pharmaceutical uses of plant-derived biopolysaccharides. International Journal of Biological Macromolecules, 233, 123454. doi: https://doi.org/10.1016/j.ijbiomac.2023.123454
  23. Liu, X., Guo, Q., Ren, S., Guo, J., Wei, C., Chang, J., Shen, B. (2022). Synthesis of starch‐based flocculant by multi‐component grafting copolymerization and its application in oily wastewater treatment. Journal of Applied Polymer Science, 140 (4). doi: https://doi.org/10.1002/app.53356
  24. Arrieta, A. A., Gañán, P. F., Márquez, S. E., Zuluaga, R. (2011). Electrically conductive bioplastics from cassava starch. Journal of the Brazilian Chemical Society, 22 (6), 1170–1176. doi: https://doi.org/10.1590/s0103-50532011000600024
  25. Anjum, M. M., Patel, K. K., Pandey, N., Tilak, R., Agrawal, A. K., Singh, S. (2019). Development of Anacardic Acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. Journal of Molecular Liquids, 296, 112085. doi: https://doi.org/10.1016/j.molliq.2019.112085
  26. Oliveira, S., Uchoa, A., Moreira, D., Petzhold, C., Weiss, C., Landfester, K., Ricardo, N. (2023). Design and Evaluation of Dual Release from Anacardic Acid-Based Polyurea Nanocapsules Components. Journal of the Brazilian Chemical Society. doi: https://doi.org/10.21577/0103-5053.20220129
  27. Almario, A. A., Mogollón, C. G., Caballero, E. C. (2019). Effect of elaboration pH on the electroactivity of cassava starch solid biopolymer electrolyte films. Rasayan Journal of Chemistry, 12 (04), 1766–1773. doi: https://doi.org/10.31788/rjc.2019.1245302
  28. Udhayasankar, R., Karthikeyan, B., Balaji, A. (2018). Coconut shell particles reinforced cardanol–formaldehyde resole resin biocomposites: Effect of treatment on thermal properties. International Journal of Polymer Analysis and Characterization, 23 (3), 252–259. doi: https://doi.org/10.1080/1023666x.2018.1427187
  29. Thiyagu, T. T., J.V, S. P. K., P, G., Sathiyamoorthy, V., T, M., VR, A. P. (2021). Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films. Biomass Conversion and Biorefinery. doi: https://doi.org/10.1007/s13399-021-01941-9
  30. Arrieta, A. A., Nuñez de la Rosa, Y., Palencia, M. (2023). Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte—Starch/Cardol. Polymers, 15 (9), 1994. doi: https://doi.org/10.3390/polym15091994
  31. Phani Kumar, P., Paramashivappa, R., Vithayathil, P. J., Subba Rao, P. V., Srinivasa Rao, A. (2002). Process for Isolation of Cardanol from Technical Cashew (Anacardium occidentale L.) Nut Shell Liquid. Journal of Agricultural and Food Chemistry, 50 (16), 4705–4708. doi: https://doi.org/10.1021/jf020224w
  32. Shukur, M. F., Ithnin, R., Kadir, M. F. Z. (2013). Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics, 20 (7), 977–999. doi: https://doi.org/10.1007/s11581-013-1033-8
Valorization of cashew nut processing by-product: development of a cardol/starch biopolymer composite with electrochemical properties and technological potential

Downloads

Published

2023-06-30

How to Cite

Arrieta, A. A., Ducuara, J. A., & Combatt, E. M. (2023). Valorization of cashew nut processing by-product: development of a cardol/starch biopolymer composite with electrochemical properties and technological potential. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 32–41. https://doi.org/10.15587/1729-4061.2023.282208

Issue

Section

Technology organic and inorganic substances