Improving the heat transfer characteristics of miniature two-phase thermosyphons with nanofluids based on Ukrainian natural alumosilicates

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.286320

Keywords:

miniature thermosyphon, nanofluids, concentration, filling factor, heat flow, thermal resistance

Abstract

In order to improve the heat transfer characteristics of miniature thermosyphons, a study of the processes of heat transfer by them using water and nanofluids as heat carriers was carried out. A water mixture based on nanoparticles of Ukrainian natural aluminosilicate - attapulgite with the addition of 0.1 % carbon nanotubes was used as nanofluids. The data of the study of the maximum heat flow and the minimum thermal resistance of copper thermosyphons with an internal diameter of 5 mm and a length of 700 mm are presented. Orientation of thermosyphons in space: vertical. The length of the heating zone varied from 50 mm to 200 mm, with the same amount of heat-carrier. The fill factor varied from 0.44 to 1.93.

A comparison was performed of the heat transfer capabilities of thermosyphons with water and with a nanofluid with a mass concentration of 0.5 %. It has been shown that nanofluid thermosyphons transmit 53 % more heat flow compared to water, and thermal resistances are reduced by 25 %.

The influence of the concentration of nanoparticles on the heat transfer characteristics of thermosyphons is shown. Nanofluids with concentrations (0.1 %, 0.5 %, 0.7 %) showed the same level of thermal resistances, with an increase in maximum heat flows compared to distilled water. Thus, when compared with the lowest concentration (0.1 %), the use of 0.5 % nanofluid gives an advantage of up to 40 %, and 0.7 % – an advantage of up to 51 %. This is explained by the appearance of a specific porous structure of anisometric nanoparticles on the heating surface, which contributes to the appearance of additional centers of vaporization during boiling and improves the heat transfer characteristics of thermosyphons.

Thus, the use of such thermosyphons with nanofluids when cooling elements of electronic equipment could improve their functional characteristics

Author Biographies

Vlаdіmіr Kravets, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Atomic Energy

Dmytro Hurov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Postgraduate Student

Department of Atomic Energy

Vasily Moraru, Gas Institute of the National Academy of Sciences of Ukraine

PhD, Senior Researcher

Department of Thermo-Chemical Processes and Nanotechnologies

References

  1. Singh, A., Dubey, S., Dubey, H. (2019) Nanotechnology: the future engineering. International Journal of Advance and Innovative Research, 6 (2), 229–233. Available at: https://www.researchgate.net/publication/333448927
  2. Zhang, Y., Zhou, Y. (2022). The recent progress of nanofluids and the state-of-art thermal devices. Highlights in Science, Engineering and Technology, 13, 82–89. doi: https://doi.org/10.54097/hset.v13i.1335
  3. Yang, L., Xu, J., Du, K., Zhang, X. (2017). Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348–369. doi: https://doi.org/10.1016/j.powtec.2017.04.061
  4. Vanaki, Sh. M., Ganesan, P., Mohammed, H. A. (2016). Numerical study of convective heat transfer of nanofluids: A review. Renewable and Sustainable Energy Reviews, 54, 1212–1239. doi: https://doi.org/10.1016/j.rser.2015.10.042
  5. Akilu, S., Sharma, K. V., Baheta, A. T., Mamat, R. (2016). A review of thermophysical properties of water based composite nanofluids. Renewable and Sustainable Energy Reviews, 66, 654–678. doi: https://doi.org/10.1016/j.rser.2016.08.036
  6. Xu, Y., Xue, Y., Qi, H., Cai, W. (2021). An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes. Renewable and Sustainable Energy Reviews, 144, 110995. doi: https://doi.org/10.1016/j.rser.2021.110995
  7. Kim, T. I., Chang, W. J., Chang, S. H. (2011). Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube. International Journal of Heat and Mass Transfer, 54 (9-10), 2021–2025. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.029
  8. Sözen, A., Menlik, T., Gürü, M., Boran, K., Kılıç, F., Aktaş, M., Çakır, M. T. (2016). A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes. Applied Thermal Engineering, 96, 330–337. doi: https://doi.org/10.1016/j.applthermaleng.2015.11.038
  9. Bondarenko, B. I., Moraru, V. N., Sydorenko, S. V., Komysh, D. V., Khovavko, A. I. (2016). Nanostructured Architectures on the Heater Surface at Nanofluids Boiling and Their Role in the Intensification of Heat Transfer. Nanoscience and Nanoengineering, 4 (1), 12–21. doi: https://doi.org/10.13189/nn.2016.040102
  10. Moraru, V. N. (2017). The Mechanism of Raising And Quantification of Specific Heat Flux at Boiling of Nanofluids in Free Convection Conditions. Energotekhnologii i resursosberezhenie, 3, 25–34. Available at: http://nbuv.gov.ua/UJRN/ETRS_2017_3_5
  11. Liu, Z. H., Yang, X. F., Guo, G. L. (2007). Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. Journal of Applied Physics, 102 (1). doi: https://doi.org/10.1063/1.2748348
  12. Paramatthanuwat, T., Boothaisong, S., Rittidech, S., Booddachan, K. (2009). Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano. Heat and Mass Transfer, 46 (3), 281–285. doi: https://doi.org/10.1007/s00231-009-0565-y
  13. Huminic, G., Huminic, A., Morjan, I., Dumitrache, F. (2011). Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. International Journal of Heat and Mass Transfer, 54 (1–3), 656–661. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.005
  14. Huminic, G., Huminic, A. (2011). Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Experimental Thermal and Fluid Science, 35 (3), 550–557. doi: https://doi.org/10.1016/j.expthermflusci.2010.12.009
  15. Xue, H. S., Fan, J. R., Hu, Y. C., Hong, R. H., Cen, K. F. (2006). The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon. Journal of Applied Physics, 100 (10). doi: https://doi.org/10.1063/1.2357705
  16. Khandekar, S., Joshi, Y. M., Mehta, B. (2008). Thermal performance of closed two-phase thermosyphon using nanofluids. International Journal of Thermal Sciences, 47 (6), 659–667. doi: https://doi.org/10.1016/j.ijthermalsci.2007.06.005
  17. Moraru, V. N., Komysh, D. V., Khovavko, A. I., Snigur, A. V., Gudkov, N. N., Sidorenko, N. A., Marinin, A. I. (2015). Nanofluids on the Basis of Ukrainian Natural Aluminosilicates are Promising Heat-Carriers for Power Engineering. Energotekhnologii i resursosberezhenie, 1, 22–32. Available at: http://dspace.nbuv.gov.ua/handle/123456789/127461
  18. Khazaee, I., Hosseini, R., Noie, S. H. (2010). Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon. Applied Thermal Engineering, 30 (5), 406–412. doi: https://doi.org/10.1016/j.applthermaleng.2009.09.012
  19. Kravets, V. Yu. (2018). Protsesy teploobminu u miniatiurnykh vyparno-kondensatsiinykh systemakh okholodzhennia. Kharkiv: FOP Brovin O. V., 288.
  20. Kravets, V., Konshin, V., Hurov, D., Vorobiov, M., Shevel, I. (2022). Determining the influence of geometric factors and the type of heat carrier on the thermal resistance of miniature two-phase thermosyphons. Eastern-European Journal of Enterprise Technologies, 4 (8 (118)), 51–59. doi: https://doi.org/10.15587/1729-4061.2022.263180
  21. Tolubinskii, V. I. (1980). Teploobmen pri kipenii. Kyiv: Naukova dumka, 316.
  22. Pekur, D. V., Nikolaenko, Yu. E., Sorokin, V. M. (2020). Optimization of the cooling system design for a compact high-power LED luminaire. Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (1), 91–101. doi: https://doi.org/10.15407/spqeo23.01.091
  23. Kamyar, A., Ong, K. S., Saidur, R. (2013). Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 65, 610–618. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.046
Improving the heat transfer characteristics of miniature two-phase thermosyphons with nanofluids based on Ukrainian natural alumosilicates

Downloads

Published

2023-08-31

How to Cite

Kravets, V., Hurov, D., & Moraru, V. (2023). Improving the heat transfer characteristics of miniature two-phase thermosyphons with nanofluids based on Ukrainian natural alumosilicates. Eastern-European Journal of Enterprise Technologies, 4(5 (124), 25–33. https://doi.org/10.15587/1729-4061.2023.286320

Issue

Section

Applied physics