Estimation of electron density, temperature and electrical characterization of silica seeded arc plasma at atmospheric pressure

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289006

Keywords:

arc discharge, silica seeding, electron density, electron temperature, Langmuir probes

Abstract

Plasma technology stands at the forefront of numerous industrial applications, offering versatile solutions from materials processing to aerospace engineering. This study employs a single Langmuir probe technique operating at atmospheric pressure to scrutinize the transformative impact of silica seeding on low-temperature arc plasma. The investigation unveils a dynamic interplay of electrons and ions within the plasma, unveiling key electrical properties. The I–V electrical properties of the arcs plasma before seeding, having a floating voltage of –39 V, demonstrate electron and ion currents for varied probe voltages. The electrons’ density is calculated to be 2.11×1013 m–3, and the electrons’ temperature is at 6.25 eV. The I–V characteristics show a floating potential of about –35 V and –37 V after seeding an arc plasma using silica in the presence of aluminum oxide (2 % by weight) powder and grain, respectively. After seeding, it is discovered that the electron temperature falls to 1.18 eV for powder while 1.16 eV for grain and electron density rises to 2×1016 m–3 for powder and 1.84×1016 m–3 for grain. In addition, a notable fall in electron temperature and a discernible rise in electron density are seen. This non-equilibrium behavior is related to silica’s catalytic function, which is enhanced by the presence of aluminum oxide. Additionally, increased ionizing activity brought on by inelastic electron collisions causes the electron temperatures in the silica-seeded arcs plasma to rise with discharge voltage. These findings can be essential for enhancing plasma-based technologies in a variety of industrial applications because they provide insightful information on how silica seeding affects arc plasma properties

Supporting Agency

  • Financial support of the University Grants Commission (UGC), Nepal is very much appreciated.

Author Biographies

Vijay Kumar Jha, Tribhuvan University

PhD Scholar

Central Department of Physics

Lekha Nath Mishra, Tribhuvan University

PhD, Associate Professor, Head of Department

Department of Physics

Patan Multiple Campus, Patandhoka

Bijoyendra Narayan, Jamuni Lal College

Professor, PhD

Department of Physics

Saddam Husain Dhobi, Tribhuvan University; Nepal Academy of Science and Technology

PhD Scholar

Central Department of Physics

Arun Kumar Shah, Tribhuvan University

PhD Scholar

Central Department of Physics

Susmita Jha, Tribhuvan University

Master of Science

Central Department of Chemistry

References

  1. Shah, A. K., Shrestha, R., Sah, R. L., Nakarmi, J. J., Mishra, L. N. (2022). Experimental study of dielectric barrier discharge in an atmospheric air pressure and its electrical characterization. JP Journal of Heat and Mass Transfer, 30, 135–150. doi: https://doi.org/10.17654/0973576322060
  2. Dolai, B., Prajapati, R. P. (2017). Rayleigh-Taylor instability and internal waves in strongly coupled quantum plasma. Physics of Plasmas, 24 (11). doi: https://doi.org/10.1063/1.5000414
  3. Thakur, G., Khanal, R., Narayan, B. (2019). Characterization of Arc Plasma by Movable Single and Double Langmuir Probes. Fusion Science and Technology, 75 (4), 324–329. doi: https://doi.org/10.1080/15361055.2019.1579623
  4. Mishra, L. N., Shibata, K., Ito, H., Yugami, N., Nishida, Y. (2003). Characteristics of electron cyclotron resonance plasma generated in a rectangular waveguide by high-power microwave. Review of Scientific Instruments, 75 (1), 84–89. doi: https://doi.org/10.1063/1.1630858
  5. Brockhaus, A., Borchardt, C., Engemann, J. (1994). Langmuir probe measurements in commercial plasma plants. Plasma Sources Science and Technology, 3 (4), 539–544. doi: https://doi.org/10.1088/0963-0252/3/4/011
  6. Ben Salem, D., Carton, O., Fakhouri, H., Pulpytel, J., Arefi-Khonsari, F. (2014). Deposition of Water Stable Plasma Polymerized Acrylic Acid/MBA Organic Coatings by Atmospheric Pressure Air Plasma Jet. Plasma Processes and Polymers, 11 (3), 269–278. doi: https://doi.org/10.1002/ppap.201300064
  7. Shakya, A., Baniya, H. B., Pradhan, S. P., Basnet, N., Adhikari, R., Subedi, D. P., Regmi, S. (2022). Cold Plasma as a Practical Approach to Cancer Treatment. Plasma Medicine, 12 (4), 57–73. doi: https://doi.org/10.1615/plasmamed.2023047628
  8. Olszewski, P., Li, J. F., Liu, D. X., Walsh, J. L. (2014). Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process. Journal of Hazardous Materials, 279, 60–66. doi: https://doi.org/10.1016/j.jhazmat.2014.06.059
  9. Mizuno, A., Yamazaki, Y., Ito, H., Yoshida, H. (1992). AC energized ferroelectric pellet bed gas cleaner. IEEE Transactions on Industry Applications, 28 (3), 535–540. doi: https://doi.org/10.1109/28.137431
  10. Francke, K.-P., Miessner, H., Rudolph, R. (2000). Plasmacatalytic processes for environmental problems. Catalysis Today, 59 (3-4), 411–416. doi: https://doi.org/10.1016/s0920-5861(00)00306-0
  11. Boutonnet Kizling, M., Järås, S. G. (1996). A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Applied Catalysis A: General, 147 (1), 1–21. doi: https://doi.org/10.1016/s0926-860x(96)00215-3
  12. Bromberg, L., Cohn, D. R., Rabinovich, A., O’Brie, C., Hochgreb, S. (1998). Plasma Reforming of Methane. Energy & Fuels, 12 (1), 11–18. doi: https://doi.org/10.1021/ef9701091
  13. Korzhyk, V., Khaskin, V., Grynyuk, A., Ganushchak, O., Peleshenko, S., Konoreva, O. et al. (2021). Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium. Eastern-European Journal of Enterprise Technologies, 4 (12 (112)), 6–17. doi: https://doi.org/10.15587/1729-4061.2021.238634
  14. Schmidt-Szałowski, K., Borucka, A., Jodzis, S. (1990). Catalytic activity of silica in ozone formation in electrical discharges. Plasma Chemistry and Plasma Processing, 10 (3), 443–450. doi: https://doi.org/10.1007/bf01447202
  15. Gruenwald, J., Reynvaan, J., Geistlinger, P. (2018). Basic plasma parameters and physical properties of inverted He fireballs. Plasma Sources Science and Technology, 27 (1), 015008. doi: https://doi.org/10.1088/1361-6595/aaa332
  16. Nagi, Ł., Kozioł, M., Zygarlicki, J. (2020). Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage. Energies, 13 (19), 5137. doi: https://doi.org/10.3390/en13195137
  17. Armijo, K., Clem, P., Kotovsky, D., Demosthenous, B., Tanbakuchi, A., Martinez, R., Muna, A., LaFleur, C. (2019). Electrical Arc Fault Particle Size Characterization. doi: https://doi.org/10.2172/1592574
  18. Shigeta, M., Hirayama, Y., Ghedini, E. (2021). Computational Study of Quenching Effects on Growth Processes and Size Distributions of Silicon Nanoparticles at a Thermal Plasma Tail. Nanomaterials, 11 (6), 1370. doi: https://doi.org/10.3390/nano11061370
  19. Shigeta, M., Tanaka, M., Ghedini, E. (2019). Numerical Analysis of the Correlation between Arc Plasma Fluctuation and Nanoparticle Growth–Transport under Atmospheric Pressure. Nanomaterials, 9 (12), 1736. doi: https://doi.org/10.3390/nano9121736
  20. Asai, S., Miyasaka, F., Nomura, K., Ogino, Y., Tanaka, M., Shigeta, M., Yamane, S. (2020). Recent Progresses of Welding and Joining Engineering. Journal of the Japan Welding Society, 89 (5), 322–335. doi: https://doi.org/10.2207/jjws.89.322
  21. Shigeta, M. (2018). Modeling and simulation of a turbulent‐like thermal plasma jet for nanopowder production. IEEJ Transactions on Electrical and Electronic Engineering, 14 (1), 16–28. doi: https://doi.org/10.1002/tee.22761
  22. Shigeta, M. (2020). Simulating Turbulent Thermal Plasma Flows for Nanopowder Fabrication. Plasma Chemistry and Plasma Processing, 40 (3), 775–794. doi: https://doi.org/10.1007/s11090-020-10060-8
  23. Porrang, S., Rahemi, N., Davaran, S., Mahdavi, M., Hassanzadeh, B., Gholipour, A. M. (2021). Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system. Journal of the Taiwan Institute of Chemical Engineers, 123, 47–58. doi: https://doi.org/10.1016/j.jtice.2021.05.024
  24. Banerjee, S., Adhikari, E., Sapkota, P., Sebastian, A., Ptasinska, S. (2020). Atmospheric Pressure Plasma Deposition of TiO2: A Review. Materials, 13 (13), 2931. doi: https://doi.org/10.3390/ma13132931
  25. Dasgupta, D., Peddi, S., Saini, D. K., Ghosh, A. (2022). Mobile Nanobots for Prevention of Root Canal Treatment Failure. Advanced Healthcare Materials, 11 (14). doi: https://doi.org/10.1002/adhm.202200232
  26. Kumaresan, L., Shanmugavelayutham, G., Surendran, S., Sim, U. (2022). Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization. Journal of the Korean Ceramic Society, 59 (3), 338–349. doi: https://doi.org/10.1007/s43207-021-00177-7
  27. Huang, Y., Li, Q., Xue, X., Xu, H., Huang, J., Fan, D. (2022). Electrostatic probe analysis of SiO2 activating flux powders transition behavior in Powder Pool Coupled Activating TIG alternating current arc plasma for aluminum alloy. Journal of Manufacturing Processes, 84, 600–609. doi: https://doi.org/10.1016/j.jmapro.2022.10.029
  28. Conversano, R. W., Lobbia, R. B., Kerber, T. V., Tilley, K. C., Goebel, D. M., Reilly, S. W. (2019). Performance characterization of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode. Plasma Sources Science and Technology, 28 (10), 105011. doi: https://doi.org/10.1088/1361-6595/ab47de
  29. Fauchais, P. (1984). Applications physico-chimiques des plasmas d’arc. Revue de Physique Appliquée, 19 (12), 1013–1045. doi: https://doi.org/10.1051/rphysap:0198400190120101300
  30. Hassouba, M. A., Galaly, A. R., Rashed, U. M. (2013). Analysis of cylindrical Langmuir probe using experiment and different theories. Plasma Physics Reports, 39 (3), 255–262. doi: https://doi.org/10.1134/s1063780x13030033
  31. Honglertkongsakul, K., Chaiyakun, S., Witit-anun, N., Kongsri, W., Limsuwan, P. (2012). Single Langmuir Probe Measurements in an Unbalanced Magnetron Sputtering System. Procedia Engineering, 32, 962–968. doi: https://doi.org/10.1016/j.proeng.2012.02.039
Estimation of electron density, temperature and electrical characterization of silica seeded arc plasma at atmospheric pressure

Downloads

Published

2023-10-31

How to Cite

Jha, V. K., Mishra, L. N., Narayan, B., Dhobi, S. H., Shah, A. K., & Jha, S. (2023). Estimation of electron density, temperature and electrical characterization of silica seeded arc plasma at atmospheric pressure. Eastern-European Journal of Enterprise Technologies, 5(5 (125), 6–14. https://doi.org/10.15587/1729-4061.2023.289006

Issue

Section

Applied physics