Improving the mathematical model of a fiber-optic inclinometer for vibration diagnostics of elements in the propulsion system with sliding bearings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289773

Keywords:

fiber-optic inclinometer, propulsion system, layered structure, refractive index, mathematical model

Abstract

The operational capacity of a vessel’s propulsion system (VPS) has an exceptionally large impact on the safety of the ship and shipping as a whole. This requires constant long-term technical diagnostics of VPS elements in order to determine their real resource. First of all, this refers to the bearing units of VPS. The practical use of the concept of continuous diagnostics requires the introduction of the latest means of monitoring the technical condition of VPS, which can significantly increase the reliability of the measurement results. That is why solving the scientific problem of creating diagnostic tools invariant to operating conditions and adapted for continuous, long-term, and reliable monitoring, namely fiber-optic inclinometers (FOI), is relevant. In order to solve the problem, the object of research has been determined – fiber-optic measuring devices for monitoring changes in the geometric position or damping conditions of oscillations in bearing units of VPS elements. The task to improve fiber-optic means was to increase the accuracy of measurement results.

The results are in the form of an improved mathematical model of FOI. The difference of the model is the calculation of actual properties of each material layer of the multilayer structure of real fiber-optic waveguides. A distinctive feature of the proposed solution is that the description of the optical-mechanical process in FOI using an improved mathematical model is more accurate and closer to the parameters of the actual process, which are determined experimentally.

The results of the research belong to the field of systems and means of technical diagnosis of VPS elements and can be applied primarily on ships, submarines, and vessels of large displacement

Author Biographies

Albert Sandler, National University "Odessa Maritime Academy"

PhD, Associate Professor

Department of Theory of Automatic Control and Computer Technology

Educational and Scientific Institute of Automation and Electromechanics

Vitalii Budashko, National University "Odessa Maritime Academy"

Doctor of Technical Sciences, Professor

Department of Electrical Engineering and Electronics

Educational and Scientific Institute of Automation and Electromechanics

Sergii Khniunin, National University "Odessa Maritime Academy"

PhD, Associate Professor

Educational and Scientific Institute of Automation and Electromechanics

Valentin Bogach, National University "Odessa Maritime Academy"

PhD, Associate Professor

Department of Materials Technology and Ship Repair

Educational and Scientific Institute of Engineering

References

  1. Kiryukhin, A. L., Romanovskiy, G. F., Khanmamedov, S. A. (2011). Sistemy uderzhaniya i stabilizatsii valov sudovykh energeticheskikh ustanovok. Sudovye energeticheskie ustanovki, 27, 10–18. Available at: http://seu.onma.edu.ua/wp-content/uploads/2020/09/2011_27_27_2.pdf
  2. Sapiga, V., Kiryukhin, A., Cherpita, P. (2014). Perfection methods for analyzing the dynamics of marine shafting. Vodnyi transport, 1, 52–61. Available at: http://nbuv.gov.ua/UJRN/Vodt_2014_1_12
  3. Duan, N., Wu, C., Huang, Y., Zhang, Z., Hua, H. (2023). Lateral vibration analysis and active control of the propeller-shafting system using a scaled experimental model. Ocean Engineering, 267, 113285. doi: https://doi.org/10.1016/j.oceaneng.2022.113285
  4. Jalali, M. H., Ghayour, M., Ziaei-Rad, S., Shahriari, B. (2014). Dynamic analysis of a high speed rotor-bearing system. Measurement, 53, 1–9. doi: https://doi.org/10.1016/j.measurement.2014.03.010
  5. Komarizadehasl, S., Komary, M., Alahmad, A., Lozano-Galant, J. A., Ramos, G., Turmo, J. (2022). A Novel Wireless Low-Cost Inclinometer Made from Combining the Measurements of Multiple MEMS Gyroscopes and Accelerometers. Sensors, 22 (15), 5605. doi: https://doi.org/10.3390/s22155605
  6. He, X., Yang, X., Zhao, L. (2014). Application of Inclinometer in Arch Bridge Dynamic Deflection Measurement. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12 (5). doi: https://doi.org/10.11591/telkomnika.v12i4.4933
  7. Budashko, V., Sandler, A., Shevchenko, V. (2022). Diagnosis of the Technical Condition of High-tech Complexes by Probabilistic Methods. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (1), 105–111. doi: https://doi.org/10.12716/1001.16.01.11
  8. Budashko, V., Sandler, A., Khniunin, S. (2023). Improving the method of linear-quadratic control over a physical model of vessel with azimuthal thrusters. Eastern-European Journal of Enterprise Technologies, 1 (2 (121)), 49–71. doi: https://doi.org/10.15587/1729-4061.2023.273934
  9. Zhao, J., Xu, F., Li, F., Xu, H. (2018). Simulation of Shupe Effect in Fiber Optic Gyroscope Fiber Coil with Inclinometer While Drilling. Acta Optica Sinica, 38 (5), 0506001. doi: https://doi.org/10.3788/aos201838.0506001
  10. Yan, T., Zhang, C., Gao, S., Lin, T. (2012). Continuous measurement for fiber optic gyro inclinometer with motion constraint. Journal of Chinese Inertial Technology, 6, 650–653. Available at: https://doi.org/10.13695/j.cnki.12-1222/o3.2012.06.009
  11. Minardo, A., Picarelli, L., Avolio, B., Coscetta, A., Papa, R., Zeni, G. et al. (2014). Fiber optic based inclinometer for remote monitoring of landslides: On site comparison with traditional inclinometers. 2014 IEEE Geoscience and Remote Sensing Symposium. doi: https://doi.org/10.1109/igarss.2014.6947382
  12. Ma, L., Tsujikawa, K., Aozasa, S., Azuma, Y. (2013). Cord identification technique for ultra-low bending loss fibers using higher order modes of visible light. Optical Fiber Technology, 19 (3), 194–199. doi: https://doi.org/10.1016/j.yofte.2013.01.002
  13. Sushchenko, O. A., Palchyk, V. V. (2012). Review of the Modern Status of the Fiber-Optic Angular Rate Sensors and Trends of their Development. Elektronika ta systemy upravlinnia, 3 (29), 74–84. Available at: https://jrnl.nau.edu.ua/index.php/ESU/article/view/887/869
  14. Sandler, A. K., Budashko, V. V. (2022). Pat. No. 153064 UA. Volokonno-optychnyi inklinometr. No. u202203784; declareted: 11.10.2022; published: 17.05.2023, Bul. No. 20. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=285079
  15. Sandler, A. (2023). Fiber-optic inclinometer for diagnosing elements of the propulsion complex of autonomous vessels. Slovak international scientific journal, 72, 46–53. doi: https://doi.org/10.5281/zenodo.8016986
  16. Zeisberger, M., Hartung, A., Schmidt, M. (2018). Understanding Dispersion of Revolver-Type Anti-Resonant Hollow Core Fibers. Fibers, 6 (4), 68. doi: https://doi.org/10.3390/fib6040068
  17. Akand, T., Islam, Md. J., Kaysir, Md. R. (2020). Low loss hollow-core optical fibers conjoining tube lattice and revolver structures. Results in Optics, 1, 100008. doi: https://doi.org/10.1016/j.rio.2020.100008
  18. Korchevsky, A. S., Kolomiets, L. V. (2015). Mechanical fiber optic cable. Collection of scientific works of the Odesa State Academy of Technical Regulation and Quality, 2 (7), 68–72. doi: https://doi.org/10.32684/2412-5288-2015-2-7-68-72
  19. DSTU IEC 60794-1-2-2002. Kabeli optychni. Chastyna 1-2. Zahalni tekhnichni umovy. Osnovni metody vyprobuvannia optychnykh kabeliv (IEC 60794-1-2:1999, IDT). Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=80375
  20. Snyder, A., Love, D. (1983). Optical Waveguide Theory. Springer, 738. doi: https://doi.org/10.1007/978-1-4613-2813-1
  21. Sadd, M. H. (2014). Elasticity Theory, Applications, and Numerics. Academic Press. doi: https://doi.org/10.1016/c2012-0-06981-5
  22. Barzanjeh, S., Xuereb, A., Gröblacher, S., Paternostro, M., Regal, C. A., Weig, E. M. (2021). Optomechanics for quantum technologies. Nature Physics, 18 (1), 15–24. doi: https://doi.org/10.1038/s41567-021-01402-0
  23. Sandler, А. (2019). Sensitive element of fiber optical accelerometer based on sapphire glass. IX mizhnarodna naukovo-metodychna konferentsiya "Sudnova elektroinzheneriia, elektronika i avtomatyka". Odesa: NU "OMA", 28–34. Available at: https://d1wqtxts1xzle7.cloudfront.net/62451964/111_%D0%9C%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8B_%D0%BA%D0%BE%D0%BD%D1%84_2019-120200323-91727-13qmcsf-libre.pdf?1586206062=&response-content-disposition=inline%3B+filename%3DProceeding_Book_of_IX_International_Scie.pdf&Expires=1698093115&Signature=balczrUSlijG9ntqfCRg0SQr7ttzteLp1Y~RxDG5G2lwBIDniLmOpM4k2iNeYbB0wXJ4zJP~sJntP-x8qkpXW7JEcGf0cDzWyXFyFTVliVCOO3lBq4Ry0RGT1jgRU3dCsC3187nzM6XcAQiJqo15UY2mLwt69Ve-xR~xZbC~0gpndY6t87rFgjpU1GY7ISRuNj0Rxup-gaNXNd~FhWsw6-2uY2~0V4cNR-V75m10aIsf5gHC6G9RT7G5cgv-kMOi2jFXNze4aNsYGwAFgThYuEKZ6fYEyctSCaChc~PpITiw3j0JkuaMLdgBsbumoBM~iQki0Jz~f9C3UMxBT95zlA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA#page=28
  24. Shore, K. A. (2012). Fiber Optics: Physics and Technology, by Fedor Mitschke. Contemporary Physics, 53 (1), 69–70. doi: https://doi.org/10.1080/00107514.2011.629738
  25. Sandler, A., Budashko, V. (2022). Improving tools for diagnosing technical condition of ship electric power installations. Eastern-European Journal of Enterprise Technologies, 5 (5 (119)), 25–33. doi: https://doi.org/10.15587/1729-4061.2022.266267
  26. Zhu, X., Wang, K., Yang, J., Huang, L., Shen, B., Sun, M. (2022). Research on the control strategy of grid connection between shore power supply and ship power grid. Energy Reports, 8, 638–647. doi: https://doi.org/10.1016/j.egyr.2022.08.164
  27. Dagkinis, I. K., Psomas, P. M., Platis, A. N., Dragović, B., Nikitakos, N. V. (2023). Modelling of the availability for the ship integrated control system sensors. Cleaner Logistics and Supply Chain, 9, 100119. doi: https://doi.org/10.1016/j.clscn.2023.100119
  28. Martins, A. B., Torres Farinha, J., Marques Cardoso, A. (2020). Calibration and Certification of Industrial Sensors – a Global Review. Wseas Transactions on Systems And Control, 15, 394–416. doi: https://doi.org/10.37394/23203.2020.15.41
  29. Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. doi: https://doi.org/10.15587/1729-4061.2021.229033
Improving the mathematical model of a fiber-optic inclinometer for vibration diagnostics of elements in the propulsion system with sliding bearings

Downloads

Published

2023-10-31

How to Cite

Sandler, A., Budashko, V., Khniunin, S., & Bogach, V. (2023). Improving the mathematical model of a fiber-optic inclinometer for vibration diagnostics of elements in the propulsion system with sliding bearings. Eastern-European Journal of Enterprise Technologies, 5(5 (125), 24–31. https://doi.org/10.15587/1729-4061.2023.289773

Issue

Section

Applied physics