The result of the investigation of a new micromodule gas burner with a sudden expansion at the outlet

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.303636

Keywords:

burner device, gas, stabilizers, sudden expansion, recirculation zones, harmful emissions

Abstract

The object of the study is a new micromodule gas burner for small hot water boilers, in which, to stabilize combustion, the phenomena of flow disruption due to sudden expansion at the outlet of the burner are used. Today, there is an urgent task related to the development of new technical solutions for the most efficient and environmentally pure combustion of fuel in power plants, particularly, it is necessary to pay special attention to the stabilization of the flare. The combustion characteristics in this burner have been studied experimentally and theoretically, calculations are given for modeling a micromodule gas burner with a sudden expansion at the outlet, in particular, the model of a burner device for burning natural gas (propane) was modeled in the Ansys Fluent 2021 R1 software package. As a result of the experiment, the length of the torch was reduced, as well as the concentrations of harmful NOx emissions were reduced with improved indicators of combustion completeness and temperature uniformity of the field. The results of experiments with different nozzles are presented, namely nozzles with slots at the outlet d1 – 0.12 m and d2 – 0.15 m. The number of modes in each experiment is 5. Mathematical modeling of this burner with the possibility of evaluating the effectiveness of these measures will allow us to develop optimal operating modes of power plants and develop new technical solutions to reduce the emission of pollutants. Based on the experimental data obtained, graphs were constructed (completeness of combustion, temperature unevenness, concentration of substances), and the results were summarized. In general, these characteristics will increase the efficiency of using this burner in hot water boilers

Supporting Agency

  • We express our gratitude to the Ministry of Education and Science for the financial support provided.

Author Biographies

Abay Dostiyarov, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

Doctor of Technical Sciences

Department of Heat Power Engineering

Nurbubi Sarakeshova, S. Seifullin Kazakh Agrotechnical Research University

Doctoral Student

Department of Heat Power Engineering

Ayaulym Yamanbekova, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

PhD

Department of Heat Power Engineering

References

  1. Liao, S., Cheng, Q., Jiang, D., Gao, J. (2005). Experimental study of flammability limits of natural gas-air mixture. Journal of Hazardous Materials, 119 (1-3), 81–84. https://doi.org/10.1016/j.jhazmat.2004.09.031
  2. Zhang, B., Xiu, G., Bai, C. (2014). Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures. Fuel, 124, 125–132. https://doi.org/10.1016/j.fuel.2014.01.090
  3. Lee, H. C., Jiang, L. Y., Mohamad, A. A. (2014). A review on the laminar flame speed and ignition delay time of Syngas mixtures. International Journal of Hydrogen Energy, 39 (2), 1105–1121. https://doi.org/10.1016/j.ijhydene.2013.10.068
  4. Mizher, U. D., Chukalin, A. V., Busygin, S. V., Koval'nogov, V. N., Fedorov, R. V. (2020). Modelirovanie i issledovanie protsessov goreniya toplivovozdushnyh smesey na osnove biogaza. Vestnik Ul'yanovskogo gosudarstvennogo tehnicheskogo universiteta, 2-3, 35–41.
  5. Chen, C., Qin, C., Chen, Z. (2022). Experimental and simulation study of key parameters of low NOx water-cooled burners. Case Studies in Thermal Engineering, 40, 102576. https://doi.org/10.1016/j.csite.2022.102576
  6. Redko, A., Redko, I. (2017). Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner. Problemele Energeticii Regionale Termoenergetica, 2 (34), 72–81. https://doi.org/10.5281/zenodo.1188850
  7. Pourhoseini, S. H. (2017). A novel configuration of natural gas diffusion burners to enhance optical, thermal and radiative characteristics of flame and reduce NOx emission. Energy, 132, 41–48. https://doi.org/10.1016/j.energy.2017.04.167
  8. Liu, Y., Ning, Z., Sun, C., Lv, M., Wei, Y. (2024). Experimental and modeling study of full- condition combustion characteristics of exhaust gas burners for solid oxide fuel cells. Fuel, 365, 131321. https://doi.org/10.1016/j.fuel.2024.131321
  9. Varghese, R. J., Kolekar, H., Hariharan, V., Kumar, S. (2018). Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures. Fuel, 214, 144–153. https://doi.org/10.1016/j.fuel.2017.10.131
  10. Alberti, M., Weber, R., Mancini, M. (2016). Re-creating Hottel’s emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base. Combustion and Flame, 169, 141–153. https://doi.org/10.1016/j.combustflame.2016.04.013
  11. Merci, B., Beji, T. (2016). Fluid Mechanics Aspects of Fire and Smoke Dynamics in Enclosures. CRC Press. https://doi.org/10.1201/b21320
  12. Huang, H., Xue, X., Liu, Y., Zhao, J., Tian, M., Niu, Y. (2024). Numerical studies of a water-cooled premixed burner for low NOx combustion of natural gas. Journal of the Energy Institute, 114, 101647. https://doi.org/10.1016/j.joei.2024.101647
  13. Norwazan, A. R., Mohd Jaafar, M. N. (2014). Diesel Performances During Combustion using high Swirling Flow in Unconfined Burner. American-Eurasian Journal of Sustainable Agriculture, 8 (7), 62–68.
  14. Krishna Prasad, A. (2021). An experimental study on premixed type producer gas burner. International Journal of Innovations in Engineering Research and Technology, 3 (9), 1–11. Available at: https://repo.ijiert.org/index.php/ijiert/article/view/918
  15. Ovchinnikov, A. A., Har'kov, V. V. (2014). Opisanie struktury zakruchennyh potokov v vihrevyh kamerah. Vestnik Kazanskogo tehnologicheskogo universiteta, 17 (23), 322–325.
  16. Khalili-Garakani, A., Iravaninia, M., Nezhadfard, M. (2021). A review on the potentials of flare gas recovery applications in Iran. Journal of Cleaner Production, 279, 123345. https://doi.org/10.1016/j.jclepro.2020.123345
  17. Hosseini, S. E., Bagheri, G., Wahid, M. A. (2014). Numerical investigation of biogas flameless combustion. Energy Conversion and Management, 81, 41–50. https://doi.org/10.1016/j.enconman.2014.02.006
  18. Hosseini, S. E., Wahid, M. A. (2013). Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Conversion and Management, 74, 426–432. https://doi.org/10.1016/j.enconman.2013.06.026
  19. Snegirev, A., Kuznetsov, E., Markus, E., Dehghani, P., Sunderland, P. (2021). Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames. Proceedings of the Combustion Institute, 38 (3), 4815–4823. https://doi.org/10.1016/j.proci.2020.06.110
  20. Galley, D., Ducruix, S., Lacas, F., Veynante, D. (2011). Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence. Combustion and Flame, 158 (1), 155–171. https://doi.org/10.1016/j.combustflame.2010.08.004
  21. Mizher, U. D. (2020). Modelirovanie protsessov goreniya tangentsial'no zakruchennoy toplivovozdushnoy smesi. Matematicheskoe modelirovanie, chislennye metody i kompleksy programm: IX Mezhdunarodnaya nauchnaya molodezhnaya shkola-seminar imeni E.V. Voskresenskogo. Saransk: SVMO, 247–251.
  22. Dostiyarov, A., Sadykova, S. (2022). Micro-modular air driven combustion nozzle: Experimental and numerical modelling studies towards optimal geometric design. Thermal Science, 26 (2 Part B), 1557–1566. https://doi.org/10.2298/tsci210410257d
  23. Sarakeshova, N. N., Dostiyarov, A. M. (2022). Pat. No. 36180 RK. Mikromodul'naya gazovaya gorelka. No. 2022/0015.1; declareted: 17.01.2022; published: 21.07.2023.
  24. Sarakeshova, N. N., Makzumova, A. K., Vernitskas, P., Kartjanov, N. R. (2023). Numerical simulation of aerodynamic air flow in a micromodule gas burner. Proceedings of the XI International scientific-practice conference «Actual problems of transport and energy: The ways of its innovative solutions». Astana.
  25. Ansys Fluent Theory Guide (2017). Ansys Inc.
The result of the investigation of a new micromodule gas burner with a sudden expansion at the outlet

Downloads

Published

2024-06-28

How to Cite

Dostiyarov, A., Sarakeshova, N., & Yamanbekova, A. (2024). The result of the investigation of a new micromodule gas burner with a sudden expansion at the outlet. Eastern-European Journal of Enterprise Technologies, 3(8 (129), 6–15. https://doi.org/10.15587/1729-4061.2024.303636

Issue

Section

Energy-saving technologies and equipment