The virtual model method in the metrological provision of automated design and control

Authors

  • Александр Леонидович Становский Odessa National Polytechnical University Shevchenko 1, Odessa, Ukraine, 65044, Ukraine
  • Любовь Витальевна Бовнегра Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0003-0429-2816
  • Юлия Владимировна Шихирева Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044, Ukraine
  • Александр Васильевич Шмараев Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-2733-4399

DOI:

https://doi.org/10.15587/1729-4061.2015.40003

Keywords:

metrological provision of CAD and ACS, image processing, virtual model method

Abstract

For the metrological provision of design and control, involving processing intermediate measurement results in the form of images, existing compression methods of the latter are not suitable. This is caused by the need to replace the inverse optimization problems with the set of lines and a sharp increase in time complexity. The virtual model method was created. The positive technical effect when using the proposed method in construction was experimentally confirmed.

The theoretical foundations of the virtual model method, representing the latter as an imaginary mapping of the object into the environment, impracticable in real conditions of existence were developed. When carrying out calculations on a virtual model in the imaginary environment, followed by a return to the real environment, the method allows significantly (by orders of magnitude) reduce the search time for the optimal solution for CAD systems and ACS.

The proposed virtual model method was tested in the environment of the general metrological system «INMER», designed for measurement and control of thermal process parameters during the reinforced concrete hardening in the cold due to processing infrared fluxes from the surface of such products. Within the ACS of the building construction process, «INMER» system was built in as a separate link in the overall automated control system, namely, in the ACS feedback loop.

In particular, the «INMER» system tests were carried out at the construction site of "Stikon" Ltd (Odessa). As a result of the tests, increase in the strength of reinforced concrete building products (columns, diaphragms, floor slabs) by 16–19 % was observed.

Author Biographies

Александр Леонидович Становский, Odessa National Polytechnical University Shevchenko 1, Odessa, Ukraine, 65044

Professor

Department of Oilgas and chemical mechanical engineering

Любовь Витальевна Бовнегра, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044

Candidate of sciences, Docent

Department of Information Technology in Engineering Design

Юлия Владимировна Шихирева, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044

PhD

Department of Oilgas and chemical mechanical engineering

Александр Васильевич Шмараев, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044

Department of Machine tools, Metrology and Certification

References

  1. Saupe, D., Hamzaoui, H., Hartenstein, R. (1996). Fractal image compression: An introductory overview. Institute for Informatics, Freiburg University, Germany, 1–66.
  2. Avcibas, I. (2011). Image Quality Statistics and their use in steganalysis and com-pression. Bogazichi Univ, 113.
  3. Datta, R., Li, J., Wang, J. Z. (2005). Content-based image retrieval − approaches and trends of the new age. Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval - MIR '05, 253–262. doi: 10.1145/1101826.1101866
  4. Sergeev, A. G. (2005). Metrologiya. Moscow: Logos, 272.
  5. Bogolyubov, N. V. (2005). Lekcii po metrologii. Moscow: Logos, 272.
  6. Stanovskij, P. A., Bovnegra, L. V., Shixireva, Yu. V. (2012). Parabolicheskoe preobrazovanie polnocvetnogo videopotoka ot teplovizora. Pracі ONPU, 2 (39), 67–71.
  7. Shixireva, Yu. V., Oborskij, G. A., Saveleva, O. S. (2014). Features of heating hardening reinforced concrete process design and control by the internal heat sources. Eastern-European Journal of Enterprise Technologies, 2/5 (68), 20–24. doi: 10.15587/1729-4061.2014.23349
  8. Long, F., Zhang, H., Feng, D. (2003). Fundamentals of content-based image retrieval. Multimedia Information Retrieval and Management − Techonological Fundamentals and Applications, Springer, 1−32.
  9. Shi, R., Feng, H., Chua, T.-S., Lee, C.-H. (2004). An adaptive image content representation and segmentation approach to automatic image annotation. Lecture Notes in Computer Science, 545–554.
  10. Krasnyx, A. A., Epifanov, S. N. (2001). Metrologiya, standartizaciya i sertifikaciya. Kiro: DznUE, 340.
  11. Gugnіn, V. P., Oborskij, G. A. (2003). Osnovi metrologіi ta vimіryuvalnoi texnіky, Odesa: Astroprint, 200.
  12. Velichko, O. M., Kolomіec, L. V., Gordіenko, T. B. (2014). Metrologіya, texnіchne regulyuvannya ta zabezpechennya yakostі. Tom 1, Metrologіya. Odesa, VMV, 688.
  13. Stanovskij, P. A. (2009). Kodirovanie i poisk podvizhnyh i nepodvizhnyh izobrazhenij v xranilishhah dannyh. Elektromashinobuduvannya ta ele-ktroobladnannya. Tematichnij vipusk «Kompyuternі sistemi ta merezhі». Kyiv: Texnіka, 72, 231–234.
  14. Winkler, S. (2005). Digital Video Quality. Vision models and metrics. Wiley, 192.
  15. Rozenfeld, A. (1987). Raspoznavanie i obrabotka izobrazhenij. Moscow: Mir, 274.
  16. Jain, R., Gupta, A. (1997). Visual Information Retrieval. Communications of the ACM, 40 (5), 72–77. doi: 10.1145/253769.253798
  17. Prett, U. (2000). Cifrovaya obrabotka izobrazhenij. Kn. 1, 2. Moscow: Nauka, 1024.
  18. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13 (4), 937–942. doi: 10.1109/tip.2003.819861
  19. Stanovskij, P. A. (2009). Segregaciya izobrazhenij s pomoshhyu parabolicheskih modelej. Materialy XVІІ seminara «Modelirovanie v prikladnyh nauchnyh issledovaniyah». Odessa: ONPU, 78–79.
  20. Kominek, J. (1995). Algorithm for fast fractal image compression. Proceedings from IS&T/SPIE 1995 Symposium on Electronic Imaging: Science & Technology. Vol. 2419. Digital Video Compression: Algorithms and Technologies, 296–305.
  21. Goncharova, O. E., Maksimov, V. G., Stanovskyi, A. L. (1999). Nechuvstvitelnyj k asimmetrii chislennyj metod optimizacii konstrukcij. Trudy Odesskogo politexnicheskogo universiteta, 2 (8), 41–44.
  22. Balan, S. A. Stanovskaya, T. P., Goncharova, O. E. (2000). Primenenie metoda virtualnogo obekta v mashinostroenii. Trudy VII seminara «Modelirovanie v prikladnyh nauchnyh issledovaniyah», Odessa: OGPU, 12–16.

Published

2015-04-20

How to Cite

Становский, А. Л., Бовнегра, Л. В., Шихирева, Ю. В., & Шмараев, А. В. (2015). The virtual model method in the metrological provision of automated design and control. Eastern-European Journal of Enterprise Technologies, 2(9(74), 30–35. https://doi.org/10.15587/1729-4061.2015.40003

Issue

Section

Information and controlling system