Investigation of the mutual influence of pores in the weld under thermo-mechanical load

Authors

  • Елена Александровна Стрельникова A. N. Podgorny Institute of Mechanical Engineering Problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-0707-7214
  • Олег Иванович Ковч Yuzhnoye design office 3 Krivorozhskaja str., Dnipropetrovsk, Ukraine, 49008, Ukraine https://orcid.org/0000-0003-1092-9609

DOI:

https://doi.org/10.15587/1729-4061.2015.51869

Keywords:

pore, crack, strain, stress, thermo-mechanical load, finite element, weld

Abstract

The mutual influence of pores in the weld under asymmetric thermo-mechanical load was investigated. The dependence of the geometric characteristics of the chain on the crack opening in the weld was explored. The technique based on the final element method for determining the stress-strain state in the weld around the pores was developed. The technique allows to evaluate the mutual influence of pores on the origin and opening of cracks in space. The technique will allow to increase the life of welds.

The feature of the research consists in setting the loads, different in time, depth of plates, length of plates and welds. The analysis of the stress-strain state of the weld at all stages of loading until complete cooling of the design was considered. The research of various load application methods was performed. The reliability of the results was determined using engineering methods.

In a pore with a diameter of 3.5 mm, subject to a maximum temperature, stresses are above the allowable σmax=3600 kgs/sm2. In the sites around the pore, the crack opening process will occur.

The calculation results show that the pore with a diameter of 3.5 mm in the weld causes cracking, it contradicts the allowable diameter of 4.0mm for such a weld. The importance of the research results lies in investigating the layered asymmetric thermo-mechanical loading. Asymmetric thermo-mechanical loading has led to cracking within the acceptable limits of the geometric parameters of pores.

Author Biographies

Елена Александровна Стрельникова, A. N. Podgorny Institute of Mechanical Engineering Problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046

Professor, Doctor of Technical Sciences, Senior Researcher

Department of Strength and Optimization

Олег Иванович Ковч, Yuzhnoye design office 3 Krivorozhskaja str., Dnipropetrovsk, Ukraine, 49008

Engineer

References

  1. Velykoyvanenko, E. A., Rozinka, H. F., Mylenyn, A. S., Pyvtorak, N. Y. (2013). Modelyrovanye protsessov zarozhdenyia y razvytyia por viazkoho razrushenyia v svarnikh konstruktsyiakh. Avtomatycheskaia svarka, 9, 26–31.
  2. Kyt, H. S., Khai, M. V. (1982). Opredelenye trekhmernikh temperaturnikh polei y napriazhenyi v beskonechnom tele s razrezamy. Yzv. AN SSSR. Mekhanyka tverdoho tela, 5, 60–67.
  3. Salehi, I., Kapoor, A., Mutton, P. (2011). Multi-axial fatigue analysis of aluminothermic rail welds under high axle load conditions. International Journal of Fatigue, 33 (9), 1324–1336. doi: 10.1016/j.ijfatigue.2011.04.010
  4. Minak, G., Ceschini, L., Boromei, I., Ponte, M. (2010). Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites. International Journal of Fatigue, 32 (1), 218–226. doi: 10.1016/j.ijfatigue.2009.02.018
  5. Moreira, P. M. G. P., de Oliveira, F. M. F., de Castro, P. M. S. T. (2008). Fatigue behaviour of notched specimens of friction stir welded aluminium alloy 6063-T6. Journal of Materials Processing Technology, 207 (1-3), 283–292. doi: 10.1016/j.jmatprotec.2007.12.113
  6. Wang, Y., Bergström, J., Burman, C. (2009). Thermal fatigue behavior of an iron-based laser sintered material. Materials Science and Engineering: A, 513-514, 64–71. doi: 10.1016/j.msea.2009.01.053
  7. Altukhov, E. V., Metod, Y. Y. (2005). Vorovycha v trekhmernoi teoryy termodynamyky plastyn. Teoret. y prykl. mekhanyka, 41, 3–8.
  8. Nian, Nhuen, Ruban, A. N. (2015). Vlyianye defektov svarnikh shvov na mekhanycheskye svoistva korpusnoi staly, opredeliaemie pry statycheskom nahruzhenyia. Vestnyk AHTU. Ser. Morskaia tekhnyka y tekhnolohyia, 2, 13–21.
  9. Serenko, A. N. (2011). Otsenka vlyianyia ostatochnikh napriazhenyi na kynetyku razvytyia ustalostnikh treshchyn v svarnikh soedynenyiakh. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu, 22, 156–161.
  10. Novatskyi, V. (1970). Dynamycheskye zadachy termoupruhosty. Moscow: Myr, 256.
  11. Shymkovych, D. H. (2001). Raschet konstruktsyi v MSC/NASTRAN for Windows. Moscow: DMK Press, 448.
  12. Kovch, O. Y. (2013). Yssledovanye prochnosty svarnikh shvov metodom konechnikh elementov. Vesnyk Khersonskoho natsyonalnoho tekhnycheskoho unyversyteta, 2, 159–162.
  13. Kovch, O. Y. (2015). Yssledovanye rastreskyvanyia poverkhnostei pry termosylovom nahruzhenyy. Vesnyk Khersonskoho natsyonalnoho tekhnycheskoho unyversyteta, 3, 367–371.

Published

2015-10-23

How to Cite

Стрельникова, Е. А., & Ковч, О. И. (2015). Investigation of the mutual influence of pores in the weld under thermo-mechanical load. Eastern-European Journal of Enterprise Technologies, 5(4(77), 59–63. https://doi.org/10.15587/1729-4061.2015.51869

Issue

Section

Mathematics and Cybernetics - applied aspects