Modeling of the case depth and surface hardness of steel during ion nitriding

Authors

  • Muzahem Khalaf Mohanad National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine
  • Viktoriia Kostyk National Technical University «Kharkiv Polytechnic Institute», Frunze, 21, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6824-3805
  • Dmytro Domin National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-7946-3651
  • Kateryna Kostyk National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-4139-9970

DOI:

https://doi.org/10.15587/1729-4061.2016.65454

Keywords:

thermochemical treatment, ion nitriding, case depth, surface hardness

Abstract

Modeling of the ion nitriding process allows solving many problems of operations management, forecasting of results and development of new treatment regimes, which is an urgent issue today. The goal of the paper was modeling of the case depth and surface hardness of 38Cr2MoAl А steel during ion nitriding. The experimental data showed that the case depth varies from 20 to 620 µm in the ion nitriding temperature range of 500-560 °С and duration of 1-12 hours, with the surface hardness varying from 8 to 12 GPa. The mathematical models in the form of quadratic polynomials, describing the dependence of the nitrided case depth and surface hardness on the temperature and duration of thermochemical treatment were obtained. The graph-analytical description of variations in the nitrided case depth and surface hardness depending on variations in temperature and duration of treatment, which allows determining the specific conditions of ion nitriding 38Cr2MoAl steel is constructed.

Author Biographies

Muzahem Khalaf Mohanad, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

Department of Materials Science

Viktoriia Kostyk, National Technical University «Kharkiv Polytechnic Institute», Frunze, 21, Kharkov, Ukraine, 61002

Candidate of technical Sciences, Associate Professor Department of Materials science

Dmytro Domin, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

Doctor of Technical Science, Professor

Department of Foundry production

Kateryna Kostyk, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

PhD, Associate professor

Department of Foundry production

References

  1. Gerasimov, S. A. (2004). Novyie idei o mehanizme obrazovaniya strukturyi azotirovannyih staley. Metallovedenie i termicheskaya obrabotka metallov, 1, 13–18.
  2. Krukovich, M. G. (2004) Modelirovanie protsessa azotirovaniya. Metallovedenie i termicheskaya obrabotka metallov, 1, 24–31.
  3. Shpis, H.-Y., Le Ten, H., Birmann, H. (2004). Kontroliruemoe azotirovanie. Metallovedenie i termicheskaya obrabotka metallov, 7, 7–11.
  4. Bazaleeva, K. O. (2005) Mehanizmyi vliyaniya azota na strukturu i svoystva staley. Metallovedenie i termicheskaya obrabotka metallov, 10 (604), 17–23.
  5. Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T. (2006). Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment time. Surface and Coatings Technology, 200 (11), 3511–3517. doi: 10.1016/j.surfcoat.2004.10.122
  6. Artemev, V. P. (2004). Ionnoe azotirovanie pokryitiy, nanesennyih iz zhidkometallicheskogo nositelya. Metallovedenie i termicheskaya obrabotka metallov, 1, 43–45.
  7. Budilov, V. V., Agzamov, R. D., Ramazanov, K. N. (2007). Ionnoe azotirovanie v tleyuschem razryade s effektom pologo katoda. Metallovedenie i termicheskaya obrabotka metallov, 7 (625), 33–36.
  8. Koroatev, A. D., Ovchinnikov, S. V., Tyumentsev, A. N. (2004). Ionnoe azotirovanie ferrito-perlitnoy i austenitnoy staley v gazovyih razryadah nizkogo davleniya. Fizika i himiya obrabotki materialov, 1, 22–27.
  9. Borisov, D. P., Goncharova, V. V., Kuzmichenko, V. M. (2006). Ionno-plazmennoe azotirovanie legirovannoy stali s primeneniem dugovogo plazmogeneratora nizkogo davleniya. Metallovedenie i termicheskaya obrabotka metallov, 12, 11–15.
  10. Kuksenov, L. I., Michugin, M. S. (2008). Vliyanie usloviy nagreva pri azotirovanii na strukturu i iznosostoykost poverhnostnyih sloev na stali 38H2MYuA. Metallovedenie i termicheskaya obrabotka metallov, 2, 29–35.
  11. Tsujikawa, M., Yamauchi, N., Ueda, N., Sone, T., Hirose, Y. (2005). Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel. Surface and Coatings Technology, 193 (1-3), 309–313. doi: 10.1016/j.surfcoat.2004.08.179
  12. Kostyk, K. O., Kostyk, V. O. (2014). Porivnjal'nyj analiz vplyvu gazovogo ta ionno-plazmovogo azotuvannja na zminu struktury i vlastyvostej legovanoi' stali 30H3VA. Visnyk Nacional'nogo tehnichnogo universytetu «HPI». Serija: Novi rishennja u suchasnyh tehnologijah, 48, 21–41.
  13. Kostyk, K. O. (2015). Development of the high-speed boriding technology of alloy steel. Eastern-European Journal of Enterprise Technology, 6/11 (78), 8–15. doi: 10.15587/1729-4061.2015.55015

Downloads

Published

2016-04-25

How to Cite

Mohanad, M. K., Kostyk, V., Domin, D., & Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2(5(80), 45–49. https://doi.org/10.15587/1729-4061.2016.65454