Дослідження ефективності електрохімічного очищення зливових стоків підприємств машинобудівного комплексу
DOI:
https://doi.org/10.15587/1729-4061.2018.150088Ключові слова:
електрокоагуляція, машинобудування, повершнево-зливовові стоки, забруднення важкими металами, густина струму, відстоюванняАнотація
Досліджено склад забруднені зливових вод території машинобудівного підприємства. Виявлено, що територія забруднена нерівномірно, а серед забруднень поверхневих стічних вод з прилеглою до виробничих цехів території переважають іони міді до 1,1 мг/дм3, цинку до 2,0 мг/дм3, нікелю до 1,6 мг/дм3, хрому 0,93 мг/дм3 і свинцю до 5,0 мг/дм3. Досліджено, що на вилучення іонів металів під час електрокоагуляційного очищення суттєво впливають наступні фактори: витрата стічної води, що поступає на очищення; час відстоювання стічної води після електрокоагуляції та густина струму під час електролізу.
На підставі експериментальних досліджень побудовано графічні залежності ефективності очищення від густини струму та часу відстоювання води. Визначені оптимальні параметри процесу очищення стічної води, які забезпечують достатньо високу ефективність очищення воді від іонів важких металів (до значень нормативів на скид) при прийнятній витраті електроенергії. Встановлено, що найкращими умовами осадження нікелю та свинцю є густина струму 50 А/м3 та час відстоювання після електрокоагуляції протягом 9 годин. Оптимальні умови осадження міді та цинку – 12 годин, а знизити концентрацію хрому до безпечних концентрацій можливо при густині струму 10 А/м3 та часу відстоювання 4 години. Виявлено, що ефективність очищення від іонів металів значно зростає з підвищенням величини струму та часу відстоювання, крім того ефективність відстоювання в 1,4–3 рази вище ніж збільшення густини струму. Показано, що збільшення часу відстоювання не завжди може компенсувати зменшення густини струму при електрокоагуляції, що потребує підбору оптимального співвідношення всіх факторів. Отримані нами експериментальні дані необхідні для розрахунку технологічних параметрів процесу очищення.
Методом повнофакторного експерименту були розроблені математичні моделі процесу, які включають залежність відгуку (залишкової концентрації) від перелічених вище факторів. Запропоновані моделі дозволяють управляти процесом електрокоагуляції шляхом впливу на фактори, від яких залежить ефективність очищенняПосилання
- Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626–638. doi: https://doi.org/10.1016/j.chemosphere.2017.10.078
- Ghaderpoori, M., kamarehie, B., Jafari, A., Ghaderpoury, A., Karami, M. (2018). Heavy metals analysis and quality assessment in drinking water – Khorramabad city, Iran. Data in Brief, 16, 685–692. doi: https://doi.org/10.1016/j.dib.2017.11.078
- Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569-570, 476–488. doi: https://doi.org/10.1016/j.scitotenv.2016.06.166
- Khandegar, V., Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent – A review. Journal of Environmental Management, 128, 949–963. doi: https://doi.org/10.1016/j.jenvman.2013.06.043
- Maksymenko, O. A., Maksymenko, O. A., Kovalenko, M. S. (2014). Saving and rational use of water at enterprises due to rainwater. Technology audit and production reserves, 3 (3 (17)), 65–68. doi: https://doi.org/10.15587/2312-8372.2014.25406
- Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 35–40. doi: https://doi.org/10.15587/1729-4061.2016.86085
- Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 20–26. doi: https://doi.org/10.15587/1729-4061.2017.91031
- Moussa, D. T., El-Naas, M. H., Nasser, M., Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. doi: https://doi.org/10.1016/j.jenvman.2016.10.032
- Akbal, F., Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269 (1-3), 214–222. doi: https://doi.org/10.1016/j.desal.2010.11.001
- Al Aji, B., Yavuz, Y., Koparal, A. S. (2012). Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Separation and Purification Technology, 86, 248–254. doi: https://doi.org/10.1016/j.seppur.2011.11.011
- Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749–756. doi: https://doi.org/10.1016/j.cej.2014.09.035
- Gatsios, E., Hahladakis, J. N., Gidarakos, E. (2015). Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. Journal of Environmental Management, 154, 117–127. doi: https://doi.org/10.1016/j.jenvman.2015.02.018
- Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1–21. doi: https://doi.org/10.1016/j.desal.2016.10.011
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Olena Maksimenko, Hanna Pancheva, Svitlana Madzhd, Yana Pysanko, Oleksandr Briankin, Tetyana Tykhomyrova, Tatiana Hrebeniuk
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.