Вивчення характеристик бінарних Ni–Co окси-гідроксидів для використання в суперконденсаторах
DOI:
https://doi.org/10.15587/1729-4061.2020.194618Ключові слова:
бінарний Ni–Co оксі-гідроксид, кобальтат нікелю, високотемпернатурний двухступевий синтез, питома ємність, суперконденсаторАнотація
Бінарні сполуки Ni-Co, такі як оксі-гідроксиди та кобальтат нікелю, є перспективними активними речовинами суперконденсаторів. Вивчено характеристики бінарних Ni-Co оксі-гідроксидів, отриманих высокотемпературним двухступеневим синтезом при використанні гарячого та холодного гідролізу. Кристалічна структура зразків вивчена методом ренгенофазового аналізу та термогравіметрії, морфологія часток – методом скануючої електронної мікроскопії, електрохімічні характеристики – методами циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклювання в суперконденсаторному режимі.
Методом скануючої електронної мікроскопії показано, что зразки холодного і гарячего гідролізу складаються із наноструктурованих часток типа «бутон квітки», сформованих пластинчатими первинними частками товщиною 70-90 нм. Методами рентгенофазового аналізу та термогравіметрії показано, що обидва зразки є гідратованими кобальтатами нікелю з різним ступенем гідратації, при наявності чистого кобальтату нікелю. Циклічною вольтамперометрією та гальваностатичним зарядно-розрядним циклюванням показано, що в зразку Ni–Co оксі-гідроксида холодного гідролізу електрохімічно активною є тільки нікелева складова. Максимальна ємність зразку холодного гідролізу – 185,7 Ф/г (при 10 мА/см2). З підвищенням густини струму циклювання до 120 мА/см2 питома ємність падає в 4,47 рази. Для зразка гарячого гідроліза виявлена активність як нікелевої, так і кобальтової складової: при зростанні густини струму циклювання з 10 мА/см2 до 120 мА/см2 питома ємність збільшується в 1,25 рази до 192,5 Ф/г. Для зразку гарячого гідролізу показана дуже висока оберненість та висока ефективність з 1 циклу роботиПосилання
- Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
- Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
- Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
- Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041
- Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K. et. al. (1994). Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells. Journal of the Electrochemical Society, 141 (11), 2956–2959. doi: https://doi.org/10.1149/1.2059264
- Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
- Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
- Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
- Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
- Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
- Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
- Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
- Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
- Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
- Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
- Jayashree, R. S., Vishnu Kamath, P. (2001). Suppression of the α→β-nickel hydroxide transformation in concentrated alkali: role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: https://doi.org/10.1023/a:1013876006707
- Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
- Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179. doi: https://doi.org/10.1149/1.1403731
- Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68 (4), 267–272.
- Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S. et. al. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29, 853–858. doi: https://doi.org/10.1023/A:1003537900947
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
- Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
- Hu, C.-C., Hsu, C.-T., Chang, K.-H., Hsu, H.-Y. (2013). Microwave-assisted hydrothermal annealing of binary Ni–Co oxy-hydroxides for asymmetric supercapacitors. Journal of Power Sources, 238, 180–189. doi: https://doi.org/10.1016/j.jpowsour.2013.03.019
- Dubal, D. P., Gomez-Romero, P., Sankapal, B. R., Holze, R. (2015). Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 11, 377–399. doi: https://doi.org/10.1016/j.nanoen.2014.11.013
- Hsu, C.-T., Hu, C.-C. (2013). Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. Journal of Power Sources, 242, 662–671. doi: https://doi.org/10.1016/j.jpowsour.2013.05.130
- Vlamidis, Y., Scavetta, E., Giorgetti, M., Sangiorgi, N., Tonelli, D. (2017). Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 143, 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031
- Wang, T., Xu, W., Wang, H. (2017). Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 257, 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074
- Martins, P. R., Ferreira, L. M. C., Araki, K., Angnes, L. (2014). Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sensors and Actuators B: Chemical, 192, 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029
- Lamiel, C., Nguyen, V. H., Hussain, I., Shim, J.-J. (2017). Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 140, 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035
- Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114
- Delmas, C., Braconnier, J. J., Borthomieu, Y., Hagenmuller, P. (1987). New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry. Materials Research Bulletin, 22 (6), 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4
- Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065
- Chen, J.-C., Hsu, C.-T., Hu, C.-C. (2014). Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 253, 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073
- Schneiderová, B., Demel, J., Zhigunov, A., Bohuslav, J., Tarábková, H., Janda, P., Lang, K. (2017). Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 499, 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096
- Nethravathi, C., Ravishankar, N., Shivakumara, C., Rajamathi, M. (2007). Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behaviour. Journal of Power Sources, 172 (2), 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098
- Lokhande, P. E., Panda, H. S. (2015). Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application. International Advanced Research Journal in Science, Engineering and Technology, 2 (8), 10–13. doi: https://doi.org/10.17148/iarjset.2015.2903
- Padmanathan, N., Selladurai, S. (2013). Solvothermal synthesis of mesoporous NiCo2O4 spinel oxide nanostructure for high-performance electrochemical capacitor electrode. Ionics, 19 (11), 1535–1544. doi: https://doi.org/10.1007/s11581-013-0907-0
- Zou, R., Xu, K., Wang, T., He, G., Liu, Q., Liu, X. et. al. (2013). Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A, 1 (30), 8560. doi: https://doi.org/10.1039/c3ta11361b
- Wang, Q., Liu, B., Wang, X., Ran, S., Wang, L., Chen, D., Shen, G. (2012). Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry, 22 (40), 21647. doi: https://doi.org/10.1039/c2jm34705a
- Kuang, M., Zhang, W., Guo, X. L., Yu, L., Zhang, Y. X. (2014). Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors. Ceramics International, 40 (7), 10005–10011. doi: https://doi.org/10.1016/j.ceramint.2014.02.099
- Yuan, C., Li, J., Hou, L., Lin, J., Zhang, X., Xiong, S. (2013). Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 1 (37), 11145. doi: https://doi.org/10.1039/c3ta11949a
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
- Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
- Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
- Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126
- Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
- Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
- Wu, Y. Q., Chen, X. Y., Ji, P. T., Zhou, Q. Q. (2011). Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochimica Acta, 56 (22), 7517–7522. doi: https://doi.org/10.1016/j.electacta.2011.06.101
- Yuan, C., Li, J., Hou, L., Lin, J., Pang, G., Zhang, L. et. al. (2013). Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 3 (40), 18573. doi: https://doi.org/10.1039/c3ra42828a
- Wei, T.-Y., Chen, C.-H., Chien, H.-C., Lu, S.-Y., Hu, C.-C. (2010). A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Advanced Materials, 22 (3), 347–351. doi: https://doi.org/10.1002/adma.200902175
- Hsu, H.-Y., Chang, K.-H., Salunkhe, R. R., Hsu, C.-T., Hu, C.-C. (2013). Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application. Electrochimica Acta, 94, 104–112. doi: https://doi.org/10.1016/j.electacta.2013.01.125
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Vadym Kovalenko, Valerii Kotok, Alexei Sykchin, Ihor Kovalenko, Oksana Berzenina, Viktoriia Stoliarenko, Iryna Plaksiienko, Pavlo Pysarenko, Marina Samojlik
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.