Розробка методики навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень

Автор(и)

  • Oleg Sova Військовий інститут телекомунікацій та інформатизації імені Героїв Крут вул. Московська, 45/1, м. Київ, Україна, 01011, Україна https://orcid.org/0000-0002-7200-8955
  • Andrii Shyshatskyi Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0001-6731-6390
  • Yurii Zhuravskyi Житомирський військовий інститут імені С. П. Корольова пр. Миру, 22, м. Житомир, Україна, 10004, Україна https://orcid.org/0000-0002-4234-9732
  • Olha Salnikova Національний університет оборони України імені Івана Черняховського пр. Повітрофлоський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0002-7190-6091
  • Oleksandr Zubov Національний університет оборони України імені Івана Черняховського пр. Повітрофлоський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0001-9424-1689
  • Ruslan Zhyvotovskyi Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0002-2717-0603
  • Іgor Romanenko Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0001-5339-7900
  • Yevhen Kalashnikov Національний університет оборони України імені Івана Черняховського пр. Повітрофлотський, 28, м. Київ, Україна, 03049, Україна https://orcid.org/0000-0003-4552-6439
  • Artem Shulhin Державний науково-дослідний інститут авіації вул. Андрющенко, 6В, м. Київ, Україна, 01135, Україна https://orcid.org/0000-0002-2403-7348
  • Alexander Simonenko Військовий інститут телекомунікацій та інформатизації імені Героїв Крут вул. Московська, 45/1, м. Київ, Україна, 01011, Україна https://orcid.org/0000-0001-8511-2017

DOI:

https://doi.org/10.15587/1729-4061.2020.199469

Ключові слова:

штучні нейронні мережі, навчання, оперативність, обробка інформації, інтелектуальні системи підтримки прийняття рішень

Анотація

Розроблено методику навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень. Відмінна особливість запропонованої методики полягає в тому, що вона проводить навчання не тільки синаптичних ваг штучної нейронної мережі, але й виду та параметрів функції належності. В разі неможливості забезпечити задану якість функціонування штучних нейронних мереж за рахунок навчання параметрів штучної нейронної мережі відбувається навчання архітектури штучних нейронних мереж. Вибір архітектури, виду та параметрів функції належності відбувається з врахуванням обчислювальних ресурсів засобу та з врахуванням типу та кількості інформації, що надходить на вхід штучної нейронної мережі. За рахунок використання запропонованої методики не відбувається накопичення помилки навчання штучних нейронних мереж в результаті обробки інформації, що надходить на вхід штучних нейронних мереж. Також відмінною особливістю розробленої методики є те, що для обчислення даних не потрібні попередні розрахункові дані. Розробка запропонованої методики обумовлена необхідністю проведення навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень, з метою обробки більшої кількості інформації, при однозначності рішень, що приймаються. За результатами дослідження встановлено, що зазначена методика навчання забезпечує в середньому на 10–18 % більшу високу ефективність навчання штучних нейронних мереж та не накопичує помилок в ході навчання. Зазначена методика дозволить проводити навчання штучних нейронних мереж за рахунок навчання параметрів та архітектури, визначити ефективні заходи для підвищення ефективності функціонування штучних нейронних мереж. Використання зазначеної методики дозволить зменшити використання обчислювальних ресурсів систем підтримки прийняття рішень та виробити заходи, що спрямовані на підвищення ефективності навчання штучних нейронних мереж; підвищити оперативність обробки інформації в штучних нейронних мережах

Біографії авторів

Oleg Sova, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут вул. Московська, 45/1, м. Київ, Україна, 01011

Доктор технічних наук, старший науковий співробітник, начальник кафедри

Кафедра автоматизованих систем управління

Andrii Shyshatskyi, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049

Кандидат технічних наук, cтарший науковий співробітник

Науково-дослідний відділ розвитку засобів радіоелектронної боротьби

Yurii Zhuravskyi, Житомирський військовий інститут імені С. П. Корольова пр. Миру, 22, м. Житомир, Україна, 10004

Доктор технічних наук, старший науковий співробітник

Науковий центр

Olha Salnikova, Національний університет оборони України імені Івана Черняховського пр. Повітрофлоський, 28, м. Київ, Україна, 03049

Доктор наук з державного управління, старший науковий співробітник, начальник навчально-наукового центру

Навчально-науковий центр стратегічних комунікацій у сфері забезпечення національної безпеки та оборони

Oleksandr Zubov, Національний університет оборони України імені Івана Черняховського пр. Повітрофлоський, 28, м. Київ, Україна, 03049

Кандидат військових наук, доцент

Кафедра управління військами

Ruslan Zhyvotovskyi, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049

Кандидат технічних наук, старший дослідник, начальник науково-дослідного відділу

Науково-дослідний відділ розвитку зенітних ракетних систем та комплексів

Іgor Romanenko, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України пр. Повітрофлоський, 28, м. Київ, Україна, 03049

Доктор технічних наук, професор, провідний науковий співробітник

Науково-дослідний відділ розвитку зенітних ракетних систем та комплексів

Yevhen Kalashnikov, Національний університет оборони України імені Івана Черняховського пр. Повітрофлотський, 28, м. Київ, Україна, 03049

Кандидат військових наук, начальник науково-дослідної лабораторії

Науково-дослідна лабораторія проблем розвитку бойового застосування ракетних військ і артилерії

Artem Shulhin, Державний науково-дослідний інститут авіації вул. Андрющенко, 6В, м. Київ, Україна, 01135

Кандидат технічних наук, старший науковий співробітник

Науково-дослідний відділ

Alexander Simonenko, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут вул. Московська, 45/1, м. Київ, Україна, 01011

Старший викладач

Кафедра автоматизованих систем управління

Посилання

  1. Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
  2. Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1), 1–6.
  3. Zhang, J., Ding, W. (2017). Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. International Journal of Environmental Research and Public Health, 14 (2), 114. doi: https://doi.org/10.3390/ijerph14020114
  4. Katranzhy, L., Podskrebko, O., Krasko, V. (2018). Modelling the dynamics of the adequacy of bank’s regulatory capital. Baltic Journal of Economic Studies, 4 (1), 188–194. doi: https://doi.org/10.30525/2256-0742/2018-4-1-188-194
  5. Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
  6. Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
  7. Kachayeva, G. I., Mustafayev, A. G. (2018). The use of neural networks for the automatic analysis of electrocardiograms in diagnosis of cardiovascular diseases. Herald of Dagestan State Technical University. Technical Sciences, 45 (2), 114–124. doi: https://doi.org/10.21822/2073-6185-2018-45-2-114-124
  8. Zhdanov, V. V. (2016). Experimental method to predict avalanches based on neural networks. Ice and Snow, 56 (4), 502–510. doi: https://doi.org/10.15356/2076-6734-2016-4-502-510
  9. Kanev, A., Nasteka, A., Bessonova, C., Nevmerzhitsky, D., Silaev, A., Efremov, A., Nikiforova, K. (2017). Anomaly detection in wireless sensor network of the “smart home” system. 2017 20th Conference of Open Innovations Association (FRUCT). doi: https://doi.org/10.23919/fruct.2017.8071301
  10. Sreeshakthy, M., Preethi, J. (2016). Classification of human emotion from deap EEG signal using hybrid improved neural networks with Сuckoo search. Brain: Broad Research in Artificial Intelligence and Neuroscience, 6 (3-4), 60–73. Available at: https://www.slideshare.net/bpatrut/classification-of-human-emotion-from-deap-eeg-signal-using-hybrid-improved-neural-networks-with-cuckoo-search
  11. Chica, J., Zaputt, S., Encalada, J., Salamea, C., Montalvo, M. (2019). Objective assessment of skin repigmentation using a multilayer perceptron. Journal of Medical Signals & Sensors, 9 (2), 88. doi: https://doi.org/10.4103/jmss.jmss_52_18
  12. Massel, L. V., Gerget, O. M., Massel, A. G., Mamedov, T. G. (2019). The Use of Machine Learning in Situational Management in Relation to the Tasks of the Power Industry. EPJ Web of Conferences, 217, 01010. doi: https://doi.org/10.1051/epjconf/201921701010
  13. Abaci, K., Yamacli, V. (2019). Hybrid Artificial Neural Network by Using Differential Search Algorithm for Solving Power Flow Problem. Advances in Electrical and Computer Engineering, 19 (4), 57–64. doi: https://doi.org/10.4316/aece.2019.04007
  14. Mishchuk, O. S., Vitynskyi, P. B. (2018). Neural Network with Combined Approximation of the Surface of the Response. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2, 18–24. doi: https://doi.org/10.20535/1810-0546.2018.2.129022
  15. Kazemi, M., Faezirad, M. (2018). Efficiency estimation using nonlinear influences of time lags in DEA Using Artificial Neural Networks. Industrial Management Journal, 10 (1), 17–34. doi: http://doi.org/10.22059/imj.2018.129192.1006898
  16. Parapuram, G., Mokhtari, M., Ben Hmida, J. (2018). An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation. Energies, 11 (3), 680. doi: https://doi.org/10.3390/en11030680
  17. Prokoptsev, N. G., Alekseenko, A. E., Kholodov, Y. A. (2018). Traffic flow speed prediction on transportation graph with convolutional neural networks. Computer Research and Modeling, 10 (3), 359–367. doi: https://doi.org/10.20537/2076-7633-2018-10-3-359-367
  18. Bodyanskiy, Y., Pliss, I., Vynokurova, O. (2013). Flexible Neo-fuzzy Neuron and Neuro-fuzzy Network for Monitoring Time Series Properties. Information Technology and Management Science, 16 (1). doi: https://doi.org/10.2478/itms-2013-0007
  19. Bodyanskiy, Ye., Pliss, I., Vynokurova, O. (2013). Flexible wavelet-neuro-fuzzy neuron in dynamic data mining tasks. Oil and Gas Power Engineering, 2 (20), 158–162.
  20. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Upper Saddle River, N.J.: Prentice Hall, Inc., 842.
  21. Nelles, O. (2001). Nonlinear System Identification. Springer, 785. doi: https://doi.org/10.1007/978-3-662-04323-3
  22. Wang, L.-X., Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3 (5), 807–814. doi: https://doi.org/10.1109/72.159070
  23. Kohonen, T. (1995). Self-Organizing Maps. Springer, 364. doi: https://doi.org/10.1007/978-3-642-97610-0
  24. Kasabov, N. (2003). Evolving Connectionist Systems. Springer, 307. doi: https://doi.org/10.1007/978-1-4471-3740-5
  25. Sugeno, M., Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28 (1), 15–33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
  26. Ljung, L. (1999). System Identification: Theory for the User. PTR Prentice Hall, Upper Saddle River, 609. Available at: https://www.twirpx.com/file/277211/
  27. Otto, P., Bodyanskiy, Y., Kolodyazhniy, V. (2003). A new learning algorithm for a forecasting neuro-fuzzy network. Integrated Computer-Aided Engineering, 10 (4), 399–409. doi: https://doi.org/10.3233/ica-2003-10409
  28. Narendra, K. S., Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1 (1), 4–27. doi: https://doi.org/10.1109/72.80202
  29. Petruk, S., Zhyvotovskyi, R., Shyshatskyi, A. (2018). Mathematical Model of MIMO. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2018.8632163
  30. Zhyvotovskyi, R., Shyshatskyi, A., Petruk, S. (2017). Structural-semantic model of communication channel. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2017.8246454
  31. Alieinykov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
  32. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197

##submission.downloads##

Опубліковано

2020-04-30

Як цитувати

Sova, O., Shyshatskyi, A., Zhuravskyi, Y., Salnikova, O., Zubov, O., Zhyvotovskyi, R., Romanenko І., Kalashnikov, Y., Shulhin, A., & Simonenko, A. (2020). Розробка методики навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень. Eastern-European Journal of Enterprise Technologies, 2(4 (104), 6–14. https://doi.org/10.15587/1729-4061.2020.199469

Номер

Розділ

Математика та кібернетика - прикладні аспекти