Розробка методики навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень
DOI:
https://doi.org/10.15587/1729-4061.2020.199469Ключові слова:
штучні нейронні мережі, навчання, оперативність, обробка інформації, інтелектуальні системи підтримки прийняття рішеньАнотація
Розроблено методику навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень. Відмінна особливість запропонованої методики полягає в тому, що вона проводить навчання не тільки синаптичних ваг штучної нейронної мережі, але й виду та параметрів функції належності. В разі неможливості забезпечити задану якість функціонування штучних нейронних мереж за рахунок навчання параметрів штучної нейронної мережі відбувається навчання архітектури штучних нейронних мереж. Вибір архітектури, виду та параметрів функції належності відбувається з врахуванням обчислювальних ресурсів засобу та з врахуванням типу та кількості інформації, що надходить на вхід штучної нейронної мережі. За рахунок використання запропонованої методики не відбувається накопичення помилки навчання штучних нейронних мереж в результаті обробки інформації, що надходить на вхід штучних нейронних мереж. Також відмінною особливістю розробленої методики є те, що для обчислення даних не потрібні попередні розрахункові дані. Розробка запропонованої методики обумовлена необхідністю проведення навчання штучних нейронних мереж для інтелектуальних систем підтримки прийняття рішень, з метою обробки більшої кількості інформації, при однозначності рішень, що приймаються. За результатами дослідження встановлено, що зазначена методика навчання забезпечує в середньому на 10–18 % більшу високу ефективність навчання штучних нейронних мереж та не накопичує помилок в ході навчання. Зазначена методика дозволить проводити навчання штучних нейронних мереж за рахунок навчання параметрів та архітектури, визначити ефективні заходи для підвищення ефективності функціонування штучних нейронних мереж. Використання зазначеної методики дозволить зменшити використання обчислювальних ресурсів систем підтримки прийняття рішень та виробити заходи, що спрямовані на підвищення ефективності навчання штучних нейронних мереж; підвищити оперативність обробки інформації в штучних нейронних мережах
Посилання
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1), 1–6.
- Zhang, J., Ding, W. (2017). Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. International Journal of Environmental Research and Public Health, 14 (2), 114. doi: https://doi.org/10.3390/ijerph14020114
- Katranzhy, L., Podskrebko, O., Krasko, V. (2018). Modelling the dynamics of the adequacy of bank’s regulatory capital. Baltic Journal of Economic Studies, 4 (1), 188–194. doi: https://doi.org/10.30525/2256-0742/2018-4-1-188-194
- Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
- Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
- Kachayeva, G. I., Mustafayev, A. G. (2018). The use of neural networks for the automatic analysis of electrocardiograms in diagnosis of cardiovascular diseases. Herald of Dagestan State Technical University. Technical Sciences, 45 (2), 114–124. doi: https://doi.org/10.21822/2073-6185-2018-45-2-114-124
- Zhdanov, V. V. (2016). Experimental method to predict avalanches based on neural networks. Ice and Snow, 56 (4), 502–510. doi: https://doi.org/10.15356/2076-6734-2016-4-502-510
- Kanev, A., Nasteka, A., Bessonova, C., Nevmerzhitsky, D., Silaev, A., Efremov, A., Nikiforova, K. (2017). Anomaly detection in wireless sensor network of the “smart home” system. 2017 20th Conference of Open Innovations Association (FRUCT). doi: https://doi.org/10.23919/fruct.2017.8071301
- Sreeshakthy, M., Preethi, J. (2016). Classification of human emotion from deap EEG signal using hybrid improved neural networks with Сuckoo search. Brain: Broad Research in Artificial Intelligence and Neuroscience, 6 (3-4), 60–73. Available at: https://www.slideshare.net/bpatrut/classification-of-human-emotion-from-deap-eeg-signal-using-hybrid-improved-neural-networks-with-cuckoo-search
- Chica, J., Zaputt, S., Encalada, J., Salamea, C., Montalvo, M. (2019). Objective assessment of skin repigmentation using a multilayer perceptron. Journal of Medical Signals & Sensors, 9 (2), 88. doi: https://doi.org/10.4103/jmss.jmss_52_18
- Massel, L. V., Gerget, O. M., Massel, A. G., Mamedov, T. G. (2019). The Use of Machine Learning in Situational Management in Relation to the Tasks of the Power Industry. EPJ Web of Conferences, 217, 01010. doi: https://doi.org/10.1051/epjconf/201921701010
- Abaci, K., Yamacli, V. (2019). Hybrid Artificial Neural Network by Using Differential Search Algorithm for Solving Power Flow Problem. Advances in Electrical and Computer Engineering, 19 (4), 57–64. doi: https://doi.org/10.4316/aece.2019.04007
- Mishchuk, O. S., Vitynskyi, P. B. (2018). Neural Network with Combined Approximation of the Surface of the Response. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2, 18–24. doi: https://doi.org/10.20535/1810-0546.2018.2.129022
- Kazemi, M., Faezirad, M. (2018). Efficiency estimation using nonlinear influences of time lags in DEA Using Artificial Neural Networks. Industrial Management Journal, 10 (1), 17–34. doi: http://doi.org/10.22059/imj.2018.129192.1006898
- Parapuram, G., Mokhtari, M., Ben Hmida, J. (2018). An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation. Energies, 11 (3), 680. doi: https://doi.org/10.3390/en11030680
- Prokoptsev, N. G., Alekseenko, A. E., Kholodov, Y. A. (2018). Traffic flow speed prediction on transportation graph with convolutional neural networks. Computer Research and Modeling, 10 (3), 359–367. doi: https://doi.org/10.20537/2076-7633-2018-10-3-359-367
- Bodyanskiy, Y., Pliss, I., Vynokurova, O. (2013). Flexible Neo-fuzzy Neuron and Neuro-fuzzy Network for Monitoring Time Series Properties. Information Technology and Management Science, 16 (1). doi: https://doi.org/10.2478/itms-2013-0007
- Bodyanskiy, Ye., Pliss, I., Vynokurova, O. (2013). Flexible wavelet-neuro-fuzzy neuron in dynamic data mining tasks. Oil and Gas Power Engineering, 2 (20), 158–162.
- Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Upper Saddle River, N.J.: Prentice Hall, Inc., 842.
- Nelles, O. (2001). Nonlinear System Identification. Springer, 785. doi: https://doi.org/10.1007/978-3-662-04323-3
- Wang, L.-X., Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3 (5), 807–814. doi: https://doi.org/10.1109/72.159070
- Kohonen, T. (1995). Self-Organizing Maps. Springer, 364. doi: https://doi.org/10.1007/978-3-642-97610-0
- Kasabov, N. (2003). Evolving Connectionist Systems. Springer, 307. doi: https://doi.org/10.1007/978-1-4471-3740-5
- Sugeno, M., Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28 (1), 15–33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
- Ljung, L. (1999). System Identification: Theory for the User. PTR Prentice Hall, Upper Saddle River, 609. Available at: https://www.twirpx.com/file/277211/
- Otto, P., Bodyanskiy, Y., Kolodyazhniy, V. (2003). A new learning algorithm for a forecasting neuro-fuzzy network. Integrated Computer-Aided Engineering, 10 (4), 399–409. doi: https://doi.org/10.3233/ica-2003-10409
- Narendra, K. S., Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1 (1), 4–27. doi: https://doi.org/10.1109/72.80202
- Petruk, S., Zhyvotovskyi, R., Shyshatskyi, A. (2018). Mathematical Model of MIMO. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2018.8632163
- Zhyvotovskyi, R., Shyshatskyi, A., Petruk, S. (2017). Structural-semantic model of communication channel. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2017.8246454
- Alieinykov, I., Thamer, K. A., Zhuravskyi, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Oleg Sova, Andrii Shyshatskyi, Yurii Zhuravskyi, Olha Salnikova, Oleksandr Zubov, Ruslan Zhyvotovskyi, Іgor Romanenko, Yevhen Kalashnikov, Artem Shulhin, Alexander Simonenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.