Удосконалення скребкового теплообмінника попереднього підігрівання рослинної сировини перед концентруванням

Автор(и)

  • Kateryna Kasabova Харківський державний університет харчування та торгівлі вул. Клочківська, 333, м. Харків, Україна, 61051, Україна https://orcid.org/0000-0001-5827-1768
  • Sergei Sabadash Сумський національний аграрний університет вул. Герасима Кондратьєва, 160, м. Суми, Україна, 40021, Україна https://orcid.org/0000-0002-0371-8208
  • Valentyna Mohutova Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700, Україна https://orcid.org/0000-0001-5982-2875
  • Vadym Volokh Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700, Україна https://orcid.org/0000-0001-7975-6377
  • Anatolii Poliakov Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700, Україна https://orcid.org/0000-0001-5332-3696
  • Tetiana Lazarieva Українська інженерно-педагогiчна академiя вул. Унiверситетська, 16, м. Харкiв, Україна, 61003, Україна https://orcid.org/0000-0003-4435-3345
  • Olga Blahyi Українська інженерно-педагогiчна академiя вул. Унiверситетська, 16, м. Харкiв, Україна, 61003, Україна https://orcid.org/0000-0001-5349-9085
  • Oleg Radchuk Сумський національний аграрний університет вул. Герасима Кондратьєва, 160, м. Суми, Україна, 40021, Україна https://orcid.org/0000-0002-8228-2499
  • Vladyslav Lavruk Харківський державний університет харчування та торгівлі вул. Клочківська, 333, м. Харків, Україна, 61051, Україна https://orcid.org/0000-0002-0943-7351

DOI:

https://doi.org/10.15587/1729-4061.2020.202501

Ключові слова:

підігрівання, скребковий теплообмінник, зрізаюча лопать, теплопідведення, гнучкий плівковий резистивний електронагрівач випромінювального типу

Анотація

На підприємствах харчових виробництв під час підігрівання рідких та пастоподібних продуктів широким попитом користуються скребкові теплообмінники, які завдяки високої інтенсивності термообробки дозволяють зберігати початкові властивості сировини, що переробляється. Більшість теплообмінників мають нестабільну стабілізуючою дією: тиск пари – температура, що призводить до псування сировини, в умовах значної енерго- та металоємності. Усунення цих недоліків можливо при використанні в якості нагрівача в вдосконаленому скребковому теплообміннику температуро-стабільного гнучкого плівкового резистивного електронагрівача випромінювального типу. В якості перемішуючого органу теплообмінника запропоновано використовувати шарнірну лопать зі зрізаючої крайкою (з відбивальною гріючою поверхнею) для отримання рівномірного розподілу товщини шару продукту на робочій поверхні й додаткового її підігрівання відбивальною поверхнею лопаті. Теплообмінник має можливість встановлення охолоджуючої оболонки з кільцевими каналами для проходження холодоагенту, яку розміщено на зовнішній поверхні безтермоізоляційного гнучкого електронагрівача. Таке рішення забезпечує можливість охолодження до –15 °С та одночасно виступає в якості додаткової повітряної теплоізоляції при відсутності носія в ній.

Визначено рівномірність розподілу теплового потоку на нагрівальній поверхні модельної конструкції вдосконаленого апарата (60,3...60,5 °С) та на відбивальній поверхні шарнірної лопаті зі зрізаючою крайкою (60,0...60,3 °С). Встановлено сумарну товщину шару рідини в залежності від частоти обертання валу запропонованої шарнірної лопаті зі зрізаючою крайкою, яка складає: при 50 хв–1 – 2,65 мм, при 350 хв–1 – 1,5 мм, в порівнянні зі стандартною шарнірною лопаттю (товщина шару від 5,0 мм до 1,5 мм) за витратою продукту W=50 л/год. Удосконалений скребковий теплообмінник характеризується зменшенням в 1,48 раз питомих витрат енергії (170,4 кДж/кг), затрачуваної на нагрівання одиниці об’єму продукту в порівнянні з підігрівачем з паровою оболонкою – 252,6 кДж/кг. В результаті досліджень підтверджено ефективність використання удосконаленого скребкового теплообмінника та запропоновано його конструкційна схема

Біографії авторів

Kateryna Kasabova, Харківський державний університет харчування та торгівлі вул. Клочківська, 333, м. Харків, Україна, 61051

Кандидат технічних наук, доцент

Кафедра технології хліба, кондитерських, макаронних виробів і харчоконцентратів

Sergei Sabadash, Сумський національний аграрний університет вул. Герасима Кондратьєва, 160, м. Суми, Україна, 40021

Кандидат технічних наук, доцент

Кафедра інженерних технологій харчових виробництв

Valentyna Mohutova, Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700

Кандидат сільськогосподарських наук

Кафедра технологій харчових виробництв

Vadym Volokh, Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700

Кандидат технічних наук

Кафедра механізації виробничих процесів у АПК

Anatolii Poliakov, Луганський національний аграрний університет вул. Слобожанська, 68, м. Старобільськ, Україна, 92700

Кандидат технічних наук, доцент

Кафедра ремонту машин, експлуатації енергетичних засобів та охорони праці

Tetiana Lazarieva, Українська інженерно-педагогiчна академiя вул. Унiверситетська, 16, м. Харкiв, Україна, 61003

Доктор педагогічних наук, професор

Кафедра харчових та хімічних технологій

Olga Blahyi, Українська інженерно-педагогiчна академiя вул. Унiверситетська, 16, м. Харкiв, Україна, 61003

Кандидат педагогічних наук, асистент

Кафедра харчових та хімічних технологій

Oleg Radchuk, Сумський національний аграрний університет вул. Герасима Кондратьєва, 160, м. Суми, Україна, 40021

Кандидат технічних наук, доцент

Кафедра інженерних технологій харчових виробництв

Vladyslav Lavruk, Харківський державний університет харчування та торгівлі вул. Клочківська, 333, м. Харків, Україна, 61051

Аспірант

Кафедра устаткування харчової і готельної індустрії ім. М.І. Беляєва

Посилання

  1. Alabina, N. M., Drozdova, V. I., Volodz'ko, G. V. et. al. (2006). Plodoovoshchnye konservy profilakticheskogo naznacheniya. Pishchevaya promyshlennost', 11, 78–79.
  2. Habanova, M., Saraiva, J. A., Holovicova, M., Moreira, S. A., Fidalgo, L. G., Haban, M. et. al. (2019). Effect of berries/apple mixed juice consumption on the positive modulation of human lipid profile. Journal of Functional Foods, 60, 103417. doi: https://doi.org/10.1016/j.jff.2019.103417
  3. Huang, L., Bai, L., Zhang, X., Gong, S. (2019). Re-understanding the antecedents of functional foods purchase: Mediating effect of purchase attitude and moderating effect of food neophobia. Food Quality and Preference, 73, 266–275. doi: https://doi.org/10.1016/j.foodqual.2018.11.001
  4. Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S. et. al. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339. doi: https://doi.org/10.1016/j.foodres.2017.05.001
  5. Oliinyk, S., Samokhvalova, O., Zaparenko, A., Shidakova-Kamenyuka, E., Chekanov, M. (2016). Research into the impact of enzyme preparations on the processes of grain dough fermentation and bread quality. Eastern-European Journal of Enterprise Technologies, 3 (11 (81)), 46–53. doi: https://doi.org/10.15587/1729-4061.2016.70984
  6. Shydakova-Kameniuka, E., Novik, A., Zhukov, Y., Matsuk, Y., Zaparenko, A., Babich, P., Oliinyk, S. (2019). Estimation of technological properties of nut meals and their effect on the quality of emulsion for butter biscuits with liquid oils. Eastern-European Journal of Enterprise Technologies, 2 (11 (98)), 56–64. doi: https://doi.org/10.15587/1729-4061.2019.159983
  7. Skrebkovye teploobmenniki «Konterm». Available at: https://www.c-o-k.ru/library/instructions/alfa-laval/teploobmenniki/10319/28248.pdf
  8. Zagorulko, A., Zahorulko, A., Kasabova, K., Chervonyi, V., Omelchenko, O., Sabadash, S. et. al. (2018). Universal multifunctional device for heat and mass exchange processes during organic raw material processing. Eastern-European Journal of Enterprise Technologies, 6 (1 (96)), 47–54. doi: https://doi.org/10.15587/1729-4061.2018.148443
  9. Boesveldt, S., Bobowski, N., McCrickerd, K., Maître, I., Sulmont-Rossé, C., Forde, C. G. (2018). The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 68, 80–89. doi: https://doi.org/10.1016/j.foodqual.2018.02.004
  10. Ahmed, J., Ramaswamy, H. S. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74 (3), 376–382. doi: https://doi.org/10.1016/j.jfoodeng.2005.03.010
  11. Zahorulko, A., Zagorulko, A., Fedak, N., Sabadash, S., Kazakov, D., Kolodnenko, V. (2019). Improving a vacuum-evaporator with enlarged heat exchange surface for making fruit and vegetable semi-finished products. Eastern-European Journal of Enterprise Technologies, 6 (11 (102)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.178764
  12. Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchkyi plivkovyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. No. u201600827; declareted: 02.02.2016; published: 24.06.2016, Bul. No. 12.
  13. Cherevko, O., Mykhaylov, V., Zagorulko, A., Zahorulko, A. (2018). Improvement of a rotor film device for the production of high­quality multicomponent natural pastes. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 11–17. doi: https://doi.org/10.15587/1729-4061.2018.126400
  14. Kiptelaya, L., Zagorulko, A., Zagorulko, A. (2015). Improvement of equipment for manufacture of vegetable convenience foods. Eastern-European Journal of Enterprise Technologies, 2 (10 (74)), 4–8. doi: https://doi.org/10.15587/1729-4061.2015.39455
  15. Cherevko, A., Kiptelaya, L., Mikhaylov, V., Zagorulko, A., Zagorulko, A. (2015). Development of energy-efficient ir dryer for plant raw materials. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 36–41. doi: https://doi.org/10.15587/1729-4061.2015.47777
  16. Cherevko, O., Mykhaylov, V., Zahorulko, A., Zahorulko, A., Borysova, A. (2018). Color characteristics of dried three-component fruit and berry pastes. Food Science and Technology, 12 (1). doi: https://doi.org/10.15673/fst.v12i1.840
  17. Qiu, J., Kloosterboer, K., Guo, Y., Boom, R. M., Schutyser, M. A. I. (2019). Conductive thin film drying kinetics relevant to drum drying. Journal of Food Engineering, 242, 68–75. doi: https://doi.org/10.1016/j.jfoodeng.2018.08.021
  18. Halder, A., Dhall, A., Datta, A. K., Black, D. G., Davidson, P. M., Li, J., Zivanovic, S. (2011). A user-friendly general-purpose predictive software package for food safety. Journal of Food Engineering, 104 (2), 173–185. doi: https://doi.org/10.1016/j.jfoodeng.2010.11.021
  19. Fayolle, F., Belhamri, R., Flick, D. (2013). Residence time distribution measurements and simulation of the flow pattern in a scraped surface heat exchanger during crystallisation of ice cream. Journal of Food Engineering, 116 (2), 390–397. doi: https://doi.org/10.1016/j.jfoodeng.2012.12.009
  20. Błasiak, P., Pietrowicz, S. (2017). An experimental study on the heat transfer performance in a batch scraped surface heat exchanger under a turbulent flow regime. International Journal of Heat and Mass Transfer, 107, 379–390. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.049
  21. Crespí-Llorens, D., Vicente, P., Viedma, A. (2018). Experimental study of heat transfer to non-Newtonian fluids inside a scraped surface heat exchanger using a generalization method. International Journal of Heat and Mass Transfer, 118, 75–87. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.115
  22. Imran, A., Rana, M. A., Siddiqui, A. M. (2017). Study of a Eyring–Powell Fluid in a Scraped Surface Heat Exchanger. International Journal of Applied and Computational Mathematics, 4 (1). doi: https://doi.org/10.1007/s40819-017-0436-z
  23. Martínez, D. S., Solano, J. P., Vicente, P. G., Viedma, A. (2019). Flow pattern analysis in a rotating scraped surface plate heat exchanger. Applied Thermal Engineering, 160, 113795. doi: https://doi.org/10.1016/j.applthermaleng.2019.113795
  24. Błasiak, P., Pietrowicz, S. (2019). A numerical study on heat transfer enhancement via mechanical aids. International Journal of Heat and Mass Transfer, 140, 203–215. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.116
  25. Acosta, C. A., Yanes, D., Bhalla, A., Guo, R., Finol, E. A., Frank, J. I. (2020). Numerical and experimental study of the glass-transition temperature of a non-Newtonian fluid in a dynamic scraped surface heat exchanger. International Journal of Heat and Mass Transfer, 152, 119525. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119525
  26. Hernández-Parra, O. D., Plana-Fattori, A., Alvarez, G., Ndoye, F.-T., Benkhelifa, H., Flick, D. (2018). Modeling flow and heat transfer in a scraped surface heat exchanger during the production of sorbet. Journal of Food Engineering, 221, 54–69. doi: https://doi.org/10.1016/j.jfoodeng.2017.09.027
  27. Vakuum-vyparnaya ustanovka M3-2S-241AM. Available at: http://dagprodmash.ru/vakuum-vyparnaia_ustanovka_m3-2s-241am.html
  28. Cherevko, A., Mayak, O., Kostenko, S., Sardarov, A. (2019). Experimental and simulation modeling of the heat exchanche process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (29), 75–85.

##submission.downloads##

Опубліковано

2020-06-30

Як цитувати

Kasabova, K., Sabadash, S., Mohutova, V., Volokh, V., Poliakov, A., Lazarieva, T., Blahyi, O., Radchuk, O., & Lavruk, V. (2020). Удосконалення скребкового теплообмінника попереднього підігрівання рослинної сировини перед концентруванням. Eastern-European Journal of Enterprise Technologies, 3(11 (105), 6–12. https://doi.org/10.15587/1729-4061.2020.202501

Номер

Розділ

Технології та обладнання харчових виробництв