Моделі класифікації паводкових явищ на основі дерев алгоритмів

Автор(и)

  • Igor Povkhan Ужгородський національний університет пл. Народна, 3, м. Ужгород, Україна, 88000, Україна https://orcid.org/0000-0002-1681-3466

DOI:

https://doi.org/10.15587/1729-4061.2020.219525

Ключові слова:

модель класифікації, дискретний об‘єкт, алгоритмічне дерево класифікації, узагальнена ознака

Анотація

Побудований ефективний механізму синтезу дерев класифікації за фіксованою початковою інформацією у вигляді навчальної вибірки для задачі розпізнавання ситуаційного стану, паводкових явищ басейнів рік. Побудоване алгоритмічне дерево класифікації буде безпомилково класифікувати всю навчальну вибірку, за якою побудована схема класифікації. Причому мати мінімальну структурну складність та складатися з компонентів – автономних алгоритмів класифікації та розпізнавання в якості вершин конструкції. Розроблений метод побудови моделей дерев алгоритмів дозволяє працювати з навчальними вибірками великого об‘єму різнотипної інформації дискретного типу. Забезпечує високу точність моделі, раціонально використовує апаратні ресурси системи в процесі генерації кінцевої схеми класифікації, дозволяє будувати моделі з наперед заданою точністю. Пропонується підхід синтезу нових алгоритмів розпізнавання на основі бібліотеки вже відомих алгоритмів та методів. На базі запропонованої концепції алгоритмічних дерев класифікації побудований набір моделей, які забезпечили ефективну класифікацію та прогнозування паводкових ситуацій для басейну річку Тиса. Запропоновані показники узагальнення даних та якості моделі дерева класифікації дозволяють ефективно представити загальні характеристики моделі, можливе їх використання для відбору оптимального дерева алгоритмів з набору побудованих на основі методів випадкових дерев класифікації. Побудовані дерева класифікації забезпечили відсутність помилок на даних навчальної та тестової вибірки, підтвердили працездатність підходу дерев алгоритмів

Біографія автора

Igor Povkhan, Ужгородський національний університет пл. Народна, 3, м. Ужгород, Україна, 88000

Кандидат технічних наук, доцент

Кафедра програмного забезпечення систем

Посилання

  1. Srikant, R., Agrawal, R. (1997). Mining generalized association rules. Future Generation Computer Systems, 13 (2-3), 161–180. doi: https://doi.org/10.1016/s0167-739x(97)00019-8
  2. Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer. doi: https://doi.org/10.1007/978-0-387-84858-7
  3. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106. doi: https://doi.org/10.1007/bf00116251
  4. Utgoff, P. E. (1989). Incremental Induction of Decision Trees. Machine Learning, 4, 161–186.
  5. Vasilenko, Y. A., Vasilenko, E. Y., Kuhayivsky, A. I., Papp, I. O. (1999). Construction and optimization of recongnizing systems. Information technologies and systems: scientific and technical journal, 1, 122–125.
  6. Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31, 249–268.
  7. Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4 (2), 227–243. doi: https://doi.org/10.1023/A:1022604100933
  8. Alpaydin, E. (2010). Introduction to Machine Learning. London: The MIT Press, 584.
  9. Povhan, I. F. (2020). Logical recognition tree construction on the basis of a step-to-step elementary attribute selection. Radio Electronics, Computer Science, Control, 2, 95–105. doi: https://doi.org/10.15588/1607-3274-2020-2-10
  10. Povkhan, І. F. (2020). The general concept of the methods of algorithmic classification trees. Radio Electronics, Computer Science, Control, 3, 108–120. doi: https://doi.org/10.15588/1607-3274-2020-3-10
  11. Povkhan, I., Lupei, M. (2020). The Algorithmic Classification Trees. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp47368.2020.9204198
  12. Povkhan, I., Lupei, M., Kliap, M., Laver, V. (2020). The Issue of Efficient Generation of Generalized Features in Algorithmic Classification Tree Methods. Data Stream Mining & Processing, 98–113. doi: https://doi.org/10.1007/978-3-030-61656-4_6
  13. Povhan, I. (2016). Designing of recognition system of discrete objects. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). Lviv, 226–231.
  14. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (2017). Classification and regression trees. Boca Raton, 368. doi: https://doi.org/10.1201/9781315139470
  15. Miyakawa, M. (1989). Criteria for selecting a variable in the construction of efficient decision trees. IEEE Transactions on Computers, 38 (1), 130–141. doi: https://doi.org/10.1109/12.8736
  16. Povkhan, I. (2020). A constrained method of constructing the logic classification trees on the basis of elementary attribute selection. Proceedings of The Third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020). Zaporizhzhia, 843–857.
  17. Mitchell, T. (1997). Machine Learning. McGraw-Hill, 432.
  18. Amit, Y., Geman, D., Wilder, K. (1997). Joint induction of shape features and tree classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (11), 1300–1305. doi: https://doi.org/10.1109/34.632990
  19. Dietterich, T. G., Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Available at: http://www.cems.uwe.ac.uk/~irjohnso/coursenotes/uqc832/tr-bias.pdf
  20. Karimi, K., Hamilton, H. J. (2011). Generation and Interpretation of Temporal Decision Rules. International Journal of Computer Information Systems and Industrial Management Applications, 3, 314–323.
  21. Deng, H., Runger, G., Tuv, E. (2011). Bias of Importance Measures for Multi-valued Attributes and Solutions. Artificial Neural Networks and Machine Learning – ICANN 2011, 293–300. doi: https://doi.org/10.1007/978-3-642-21738-8_38
  22. Koskimaki, H., Juutilainen, I., Laurinen, P., Roning, J. (2008). Two-level clustering approach to training data instance selection: A case study for the steel industry. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). doi: https://doi.org/10.1109/ijcnn.2008.4634228
  23. Subbotin, S. A. (2019). Construction of decision trees for the case of low-information features. Radio Electronics, Computer Science, Control, 1, 121–130.
  24. Kamiński, B., Jakubczyk, M., Szufel, P. (2017). A framework for sensitivity analysis of decision trees. Central European Journal of Operations Research, 26 (1), 135–159. doi: https://doi.org/10.1007/s10100-017-0479-6
  25. Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine learning, 40, 139–157. doi: https://doi.org/10.1023/A:1007607513941
  26. Subbotin, S. A. (2013). Methods of sampling based on exhaustive and evolutionary search. Automatic Control and Computer Sciences, 47 (3), 113–121. doi: https://doi.org/10.3103/s0146411613030073
  27. De Mántaras, R. L. (1991). A distance-based attribute selection measure for decision tree induction. Machine Learning, 6 (1), 81–92. doi: https://doi.org/10.1007/bf00153761
  28. Painsky, A., Rosset, S. (2017). Cross-Validated Variable Selection in Tree-Based Methods Improves Predictive Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (11), 2142–2153. doi: https://doi.org/10.1109/tpami.2016.2636831
  29. Saha, S. (2018). What is the C4.5 algorithm and how does it work? Available at: https://towardsdatascience.com/what-is-the-c4-5-algorithm-and-how-does-it-work-2b971a9e7db0
  30. C5.0 Classification Models. Available at: https://cran.r-project.org/web/packages/C50/vignettes/C5.0.html
  31. C5.0 Decision Trees and Rule-Based Models. Available at: https://topepo.github.io/C5.0/reference/C5.0.html
  32. C5.0: An Informal Tutorial. Available at: https://www.rulequest.com/see5-unix.html
  33. Vasilenko, Y. A., Vashuk, F. G., Povkhan, I. F. (2010). The importance of discrete signs. XX International Conference Promising ways and directions of improving the educational system. Uzhgorod, 217–222.
  34. Subbotin, S. A., Oliinyk, A. A. (2016). The Dimensionality Reduction Methods Based on Computational Intelligence in Problems of Object Classification and Diagnosis. Advances in Intelligent Systems and Computing, 11–19. doi: https://doi.org/10.1007/978-3-319-48923-0_2
  35. Subbotin, S. (2019). A random forest model building using a priori information for diagnosis. Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), 2353, 962–973.

##submission.downloads##

Опубліковано

2020-12-31

Як цитувати

Povkhan, I. (2020). Моделі класифікації паводкових явищ на основі дерев алгоритмів. Eastern-European Journal of Enterprise Technologies, 6(4 (108), 58–68. https://doi.org/10.15587/1729-4061.2020.219525

Номер

Розділ

Математика та кібернетика - прикладні аспекти