Розробка методики прогнозування рівня хімічного ураження атмосфери при активному осадженні небезпечних газів

Автор(и)

  • Андрій Сергійович Мельниченко Національний університет цивільного захисту України, Україна https://orcid.org/0000-0002-7229-6926
  • Максим Володимирович Кустов Національний університет цивільного захисту України, Україна https://orcid.org/0000-0002-6960-6399
  • Олексій Євгенович Басманов Національний університет цивільного захисту України, Україна https://orcid.org/0000-0002-6434-6575
  • Олександр Андрійович Тарасенко Національний університет цивільного захисту України, Україна https://orcid.org/0000-0002-1313-1072
  • Олег Ігорович Богатов Харківський національний автомобільно-дорожній університет, Україна https://orcid.org/0000-0001-7342-7556
  • Михайло Миколайович Кравцов Харківський національний автомобільно-дорожній університет, Україна https://orcid.org/0000-0002-3218-2182
  • Олена Іванівна Петрова Миколаївський національний аграрний університет, Україна https://orcid.org/0000-0001-8612-3981
  • Тетяна Василівна Підпала Миколаївський національний аграрний університет, Україна https://orcid.org/0000-0002-4072-7576
  • Олена Іванівна Каратєєва Миколаївський національний аграрний університет, Україна https://orcid.org/0000-0002-0652-1240
  • Наталя Петрівна Шевчук Миколаївський національний аграрний університет, Україна https://orcid.org/0000-0002-5845-2582

DOI:

https://doi.org/10.15587/1729-4061.2022.251675

Ключові слова:

небезпечні гази, осадження небезпечної речовини, прогнозування масштабів забруднення, локалізація зони ураження

Анотація

Розроблено методику прогнозування рівня хімічного забруднення атмосфери, який включає в себе математичну модель розподілу концентрації небезпечного газу в атмосфері при його активному осадженні дисперсними струменями рідини та процедуру його реалізації. На основі диференційних рівнянь розповсюдження газу в просторі отримано поетапну модель розповсюдження хмари небезпечної хімічної речовини. Модель описує етапи викиду небезпечної газоподібної речовини із аварійного технологічного обладнання, осадження небезпечного газу дрібнодисперсним потоком та вільне розповсюдження хмари в повітрі. Розроблена математична модель дозволяє проводити розрахунок розмірів зон забруднення з визначенням граничних умов безпеки. При прогнозуванні враховуються основні метеорологічні параметри, ширина зони осадження та хімічні властивості як газу так і рідини. Проведено порівняльний аналіз результатів прогнозування умовної зони хімічного ураження при вільному розповсюдженні хмари та при активному осадженні атмосферними опадами або технічними пристроями. Результати моделювання показали, що при збільшенні швидкості вітру з 1 м/с до 5 м/с відбувається збільшення розмірів зони ураження в 2,7 разів, при цьому концентрація небезпечного газу в хмарі падає в 2,5‑3 рази. Запропоновано алгоритм інтеграції розробленої методики прогнозування рівня хімічного забруднення атмосфери до загального циклу управління в умовах надзвичайних ситуацій. Особливо слід відмітити, що розроблена методика містить увесь спектр складових, які необхідні для її практичного використання. Це опис процедури та практичних рекомендацій щодо використання запропонованої методики при ліквідації надзвичайних ситуацій та перелік вірогідних обставин, коли використання розробленої методики буде найефективнішим

Біографії авторів

Андрій Сергійович Мельниченко, Національний університет цивільного захисту України

Викладач

Кафедра організації та технічного забезпечення аварійно-рятувальних робіт

Максим Володимирович Кустов, Національний університет цивільного захисту України

Доктор технічних наук, доцент

Науковий відділ з проблем цивільного захисту та техногенно-екологічної безпеки

Олексій Євгенович Басманов, Національний університет цивільного захисту України

Доктор технічних наук, професор

Науковий відділ з проблем цивільного захисту та техногенно-екологічної безпеки

Олександр Андрійович Тарасенко, Національний університет цивільного захисту України

Доктор технічних наук, професор

Кафедра фізико-математичних дисциплін

Олег Ігорович Богатов, Харківський національний автомобільно-дорожній університет

Кандидат технічних наук, доцент

Кафедра метрології та безпеки життєдіяльності

Михайло Миколайович Кравцов, Харківський національний автомобільно-дорожній університет

Кандидат технічних наук, доцент

Кафедра метрології та безпеки життєдіяльності

Олена Іванівна Петрова, Миколаївський національний аграрний університет

Кандидат сільськогосподарських наук, доцент

Кафедра технології переробки, стандартизації і сертифікації продукції тваринництва

Тетяна Василівна Підпала, Миколаївський національний аграрний університет

Доктор сільськогосподарських наук, професор

Кафедра технології переробки, стандартизації і сертифікації продукції тваринництва

Олена Іванівна Каратєєва, Миколаївський національний аграрний університет

Кандидат сільськогосподарських наук, доцент

Кафедра генетики, годівлі тварин та біотехнології

Наталя Петрівна Шевчук, Миколаївський національний аграрний університет

Доктор філософії

Кафедра технології переробки, стандартизації і сертифікації продукції тваринництва

Посилання

  1. Oggero, A., Darbra, R., Munoz, M., Planas, E., Casal, J. (2006). A survey of accidents occurring during the transport of hazardous substances by road and rail. Journal of Hazardous Materials, 133 (1-3), 1–7. doi: https://doi.org/10.1016/j.jhazmat.2005.05.053
  2. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  3. Poluyan, L. V., Syutkina, E. V., Guryev, E. S. (2017). Software Systems for Prediction and Immediate Assessment of Emergency Situations on Municipalities Territories. IOP Conference Series: Materials Science and Engineering, 262, 012199. doi: https://doi.org/10.1088/1757-899x/262/1/012199
  4. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  5. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: http://29yjmo6.257.cz/bitstream/123456789/9380/1/Poll%20Res-10_proof.pdf
  6. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664. Available at: http://iwww.ptmts.org.pl/jtam/index.php/jtam/article/view/v52n3p655/1869
  7. Malmén, Y., Nissilä, M., Virolainen, K., Repola, P. (2010). Process chemicals – An ever present concern during plant shutdowns. Journal of Loss Prevention in the Process Industries, 23 (2), 249–252. doi: https://doi.org/10.1016/j.jlp.2009.10.002
  8. Hapon, Y., Kustov, M., Kalugin, V., Savchenko, A. (2021). Studying the Effect of Fuel Elements Structural Materials Corrosion on their Operating Life. Materials Science Forum, 1038, 108–115. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.108
  9. Bundy, J., Pfarrer, M. D., Short, C. E., Coombs, W. T. (2017). Crises and Crisis Management: Integration, Interpretation, and Research Development. Journal of Management, 43 (6), 1661–1692. doi: https://doi.org/10.1177/0149206316680030
  10. Zhang, H., Duan, H., Zuo, J., Song, M., Zhang, Y., Yang, B., Niu, Y. (2017). Characterization of post-disaster environmental management for Hazardous Materials Incidents: Lessons learnt from the Tianjin warehouse explosion, China. Journal of Environmental Management, 199, 21–30. doi: https://doi.org/10.1016/j.jenvman.2017.05.021
  11. Nourian, R., Mousavi, S. M., Raissi, S. (2019). A fuzzy expert system for mitigation of risks and effective control of gas pressure reduction stations with a real application. Journal of Loss Prevention in the Process Industries, 59, 77–90. doi: https://doi.org/10.1016/j.jlp.2019.03.003
  12. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
  13. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  14. Kovaliova, O., Pivovarov, O., Kalyna, V., Tchoursinov, Y., Kunitsia, E., Chernukha, A. et. al. (2020). Implementation of the plasmochemical activation of technological solutions in the process of ecologization of malt production. Eastern-European Journal of Enterprise Technologies, 5 (10 (107)), 26–35. doi: https://doi.org/10.15587/1729-4061.2020.215160
  15. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  16. Sytnik, N., Kunitsia, E., Mazaeva, V., Chernukha, A., Kovalov, P., Grigorenko, N. et. al. (2020). Rational parameters of waxes obtaining from oil winterization waste. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 29–35. doi: https://doi.org/10.15587/1729-4061.2020.219602
  17. Teslenko, A., Chernukha, A., Bezuglov, O., Bogatov, O., Kunitsa, E., Kalyna, V. et. al. (2019). Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 42–49. doi: https://doi.org/10.15587/1729-4061.2019.181668
  18. Chernukha, A., Chernukha, A., Ostapov, K., Kurska, T. (2021). Investigation of the Processes of Formation of a Fire Retardant Coating. Materials Science Forum, 1038, 480–485. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.480
  19. Dahia, A., Merrouche, D., Merouani, D. R., Rezoug, T., Aguedal, H. (2018). Numerical Study of Long-Term Radioactivity Impact on Foodstuff for Accidental Release Using Atmospheric Dispersion Model. Arabian Journal for Science and Engineering, 44 (6), 5233–5244. doi: https://doi.org/10.1007/s13369-018-3518-2
  20. Chernukha, A., Chernukha, A., Kovalov, P., Savchenko, A. (2021). Thermodynamic Study of Fire-Protective Material. Materials Science Forum, 1038, 486–491. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.486
  21. Leelőssy, Á., Molnár, F., Izsák, F., Havasi, Á., Lagzi, I., Mészáros, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Central European Journal ofGeosciences, 6 (3), 257–278. doi: https://doi.org/10.2478/s13533-012-0188-6
  22. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Safety Reports Series No. 19 (2001). International Atomic Energy Agency. Vienna. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1103_scr.pdf
  23. Hoinaski, L., Franco, D., de Melo Lisboa, H. (2016). Comparison of plume lateral dispersion coefficients schemes: Effect of averaging time. Atmospheric Pollution Research, 7 (1), 134–141. doi: https://doi.org/10.1016/j.apr.2015.08.004
  24. Swain, C. (2009). WISER and REMM: Resources for Disaster Response. Journal of Electronic Resources in Medical Libraries, 6 (3), 253–259. doi: https://doi.org/10.1080/15424060903167393
  25. Polorecka, M., Kubas, J., Danihelka, P., Petrlova, K., Repkova Stofkova, K., Buganova, K. (2021). Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management. Sustainability, 13 (1), 438. doi: https://doi.org/10.3390/su13010438
  26. Brandt, J., Christensen, J. H., Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, 2 (5), 397–417. doi: https://doi.org/10.5194/acp-2-397-2002
  27. Yan, X., Zhou, Y., Diao, H., Gu, H., Li, Y. (2020). Development of mathematical model for aerosol deposition under jet condition. Annals of Nuclear Energy, 142, 107394. doi: https://doi.org/10.1016/j.anucene.2020.107394
  28. Kustov, M., Melnychenko, A., Taraduda, D., Korogodska, A. (2021). Research of the Chlorine Sorption Processes when its Deposition by Water Aerosol. Materials Science Forum, 1038, 361–373. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.361
  29. Loosmore, G. A., Cederwall, R. T. (2004). Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmospheric Environment, 38 (7), 993–1003. doi: https://doi.org/10.1016/j.atmosenv.2003.10.055
  30. Elperin, T., Fominykh, A., Krasovitov, B., Vikhansky, A. (2011). Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere. Atmospheric Environment, 45 (14), 2427–2433. doi: https://doi.org/10.1016/j.atmosenv.2011.02.008
  31. Wei, L. (2011). Research on Countermeasures and Methods of Disposing Incidents of Hazardous Chemicals Reacting with Water. Procedia Engineering, 26, 2278–2286. doi: https://doi.org/10.1016/j.proeng.2011.11.2435
  32. Kustov, M. (2016). The study of formation and acid precipitation dynamics as a result of big natural and man-made fires. Eastern-European Journal of Enterprise Technologies, 1 (10 (79)), 11–17. doi: https://doi.org/10.15587/1729-4061.2016.59685
  33. Shiraiwa, M., Pfrang, C., Koop, T., Pöschl, U. (2012). Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 12 (5), 2777–2794. doi: https://doi.org/10.5194/acp-12-2777-2012
  34. Tsuruta, T., Nagayama, G. (2004). Molecular Dynamics Studies on the Condensation Coefficient of Water. The Journal of Physical Chemistry B, 108 (5), 1736–1743. doi: https://doi.org/10.1021/jp035885q
  35. Julin, J., Shiraiwa, M., Miles, R. E. H., Reid, J. P., Pöschl, U., Riipinen, I. (2013). Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models. The Journal of Physical Chemistry A, 117 (2), 410–420. doi: https://doi.org/10.1021/jp310594e
  36. Zhang, R., Hoflinger, F., Reindl, L. (2013). Inertial Sensor Based Indoor Localization and Monitoring System for Emergency Responders. IEEE Sensors Journal, 13 (2), 838–848. doi: https://doi.org/10.1109/jsen.2012.2227593
  37. Torres, O., Bhartia, P., Herman, J., Sinyuk, A., Ginoux, P., Holben, B. (2002). A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. Journal of the Atmospheric Sciences, 59 (3), 398–413. doi: https://doi.org/10.1175/1520-0469(2002)059<0398:altroa>2.0.co;2
  38. Levy, R. C., Remer, L. A., Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres, 112 (D13). doi: https://doi.org/10.1029/2006jd007815
  39. Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C., Holben, B. N. (2003). Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108 (D21). doi: https://doi.org/10.1029/2002jd003179
  40. Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D. et. al. (2002). The MODIS fire products. Remote Sensing of Environment, 83 (1-2), 244–262. doi: https://doi.org/10.1016/s0034-4257(02)00076-7
  41. Van Zadelhoff, G.-J., Stoffelen, A., Vachon, P. W., Wolfe, J., Horstmann, J., Belmonte Rivas, M. (2014). Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmospheric Measurement Techniques, 7 (2), 437–449. doi: https://doi.org/10.5194/amt-7-437-2014
  42. Sweet, W. V., Kopp, R. E., Weaver, C. P. et. al. (2017). Global and Regional Sea Level Rise Scenarios for the United States. NOAA Technical Report NOS CO-OPS 083. Maryland. Available at: https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
  43. Cunningham, J. D., Ricker, F. L., Nelson, C. S. (2003). The National Polar-orbiting Operational Environmental Satellite System future US operational Earth observation system. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). doi: https://doi.org/10.1109/igarss.2003.1293773
  44. Diner, D. J., Beckert, J. C., Bothwell, G. W., Rodriguez, J. I. (2002). Performance of the MISR instrument during its first 20 months in Earth orbit. IEEE Transactions on Geoscience and Remote Sensing, 40 (7), 1449–1466. doi: https://doi.org/10.1109/tgrs.2002.801584
  45. Malkomes, M., Toussaint, M., Mammen, T. (2002). The new radar data processing software for the German Weather Radar Network. Proceedings of ERAD, 335–338. Available at: https://www.researchgate.net/publication/228608059_The_new_radar_data_processing_software_for_the_German_Weather_Radar_Network
  46. Paneque-Gálvez, J., McCall, M., Napoletano, B., Wich, S., Koh, L. (2014). Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. Forests, 5 (6), 1481–1507. doi: https://doi.org/10.3390/f5061481

##submission.downloads##

Опубліковано

2022-02-25

Як цитувати

Мельниченко, А. С., Кустов, М. В., Басманов, О. Є., Тарасенко, О. А., Богатов, О. І., Кравцов, М. М., Петрова, О. І., Підпала, Т. . В., Каратєєва, О. І., & Шевчук, Н. П. (2022). Розробка методики прогнозування рівня хімічного ураження атмосфери при активному осадженні небезпечних газів. Eastern-European Journal of Enterprise Technologies, 1(10(115), 31–40. https://doi.org/10.15587/1729-4061.2022.251675

Номер

Розділ

Екологія