Визначення ролі полівінілового спирту при формуванні та в структурі катодно синтезованого композитного елетрохромного гідроксиднонікелевого шару: темплат або поверхнево-активна речовина

Автор(и)

  • Вадим Леонідович Коваленко Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0001-8879-7189
  • Олександра Сергіївна Зіма Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-4994-7014
  • Ровіл Касимович Нафєєв Державний університет телекомунікацій, Україна https://orcid.org/0000-0003-2721-9718
  • Володимир Валентинович Вербицький Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр, Україна https://orcid.org/0000-0001-7045-8293
  • Олена Сергіївна Мельник Сумськой національний аграрний університет, Україна https://orcid.org/0000-0001-5763-0431

DOI:

https://doi.org/10.15587/1729-4061.2022.255482

Ключові слова:

гідроксид нікелю, електрохромна плівка, полівініловий спирт, темплат, ПАР, ступінь полімеризації

Анотація

Одним із перспективних напрямів використання гідроксиду нікелю є електрохімічні електрохромні пристрої. Для суттєвого покращення характеристик було досліджено роль полівініловий спирт (ПВС) при синтезі та в структурі композитних плівок Ni(OH)2-ПВС шляхом вивчення впливу його концентрації (30, 40, 50 г/л) та ступеню полімеризації (типи 17-99, 24-99, 30-99). Адгезія досліджувалася візуально, електрохімічні та електрохромні властивості – методом циклічної вольтамперометрії із одночасною фіксацією оптичних характеристик. Показано, що при концентрації 30 г/л плівка відшаровується та має слабкі електрохімічні та електрохромні властивості. Наявність двох катодних піків (Е=500–510 мВ і Е=560 мВ) на циклічній вольтамперограмі показує наявність гідроксиду нікелю в матриці ПВС та гідроксиду нікелю з адсорбованим ПВС. Це вказує на подвійну роль ПВС – як ПАР та як темплата. При низьких концентраціях роль ПВС як ПАР превалює. Підвищення концентрації призводить до збільшення характеристик плівки за рахунок підсилення ролі ПВС як темплата: при 50 г/л плівка не відшаровується та має добрі електрохімічні та електрохромні характеристики.

Показано, що при низькому ступеню полімеризації ПВС (тип 17-99) переважно грає роль ПАР, однак також є темплатом. Плівка при цьому розтріскується та має посередні характеристики. Використання ПВС середнього ступеня полімеризації (тип 24-99) дозволяє отримати плівку з високими адгезійними, електрохімічними та електрохромними характеристиками. Показано, що в цьому випадку ПВС виконує функцію темплату, на вольтамперограмі є тільки один катодний пік при Е=500–510 мВ. Виявлено, що використання ПВС з високим ступенем полімеризації (тип 30-99) призводить до суттєвого погіршення характеристик, в том числі до повного відшаровування плівки. Ймовірно, це пов’язано із збитковою кількістю ПВС в плівці

Біографії авторів

Вадим Леонідович Коваленко, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок і косметичних засобів

Valerii Kotok, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Олександра Сергіївна Зіма, Український державний хіміко-технологічний університет

Аспірантка

Кафедра аналітичної хімії та хімічних технологій харчових добавок та косметичних засобів

Ровіл Касимович Нафєєв, Державний університет телекомунікацій

Кандидат фізико-математичних наук, доцент

Кафедра фізики

Володимир Валентинович Вербицький, Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр

Доктор педагогічних наук, професор

Кафедра медичних, біологічних та валеологічних основ захисту життя та здоров’я

Директор

Олена Сергіївна Мельник, Сумськой національний аграрний університет

Кандидат технічних наук, доцент, старший науковий співробітник

Науково-дослідна частина

Посилання

  1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  2. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
  3. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  4. Kovalenko, V., Kotok, V. (2019). The effect of template residual content on supercapacitive characteristics of Ni(OH)2, obtained by template homogeneous precipitation. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 29–37. doi: https://doi.org/10.15587/1729-4061.2019.181020
  5. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  6. Fomanyuk, S. S., Kolbasov, G. Y., Chernii, V. Y., Tretyakova, I. N. (2017). Gasochromic α,β–Ni(OH)2 films for the determination of CO and chlorine content. Sensors and Actuators B: Chemical, 244, 717–726. doi: https://doi.org/10.1016/j.snb.2017.01.062
  7. ironyak, M., Volnyanska, O., Labyak, O., Kovalenko, V., Kotok, V. (2019). Development of a potentiometric sensor sensitive to polysorbate 20. EUREKA: Physics and Engineering, 4, 3–9. doi: https://doi.org/10.21303/2461-4262.2019.00942
  8. Fomanyuk, S. S., Krasnov, Y. S., Kolbasov, G. Y. (2013). Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. Journal of Solid State Electrochemistry, 17 (10), 2643–2649. doi: https://doi.org/10.1007/s10008-013-2169-1
  9. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  10. Araceli, M., Vidales-Hurtado, Mendoza, A. (2006). Electrochromic Nickel Hydroxide Thin Films Chemically Deposited. MRS Proceedings, 972. doi: https://doi.org/10.1557/proc-0972-aa09-08
  11. Vidales-Hurtado, M. A., Mendoza-Galván, A. (2014). Electrochromic Properties of Nanoporous α and β Nickel Hydroxide Thin Films Obtained by Chemical Bath Deposition. Journal of Nano Research, 28, 63–72. doi: https://doi.org/10.4028/www.scientific.net/jnanor.28.63
  12. Torresi, R. M., Vázquez, M. V., Gorenstein, A., de Torresi, S. I. C. (1993). Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation. Thin Solid Films, 229 (2), 180–186. doi: https://doi.org/10.1016/0040-6090(93)90361-r
  13. Liu, J., Chiam, S. Y., Pan, J., Wong, L. M., Li, S. F. Y., Ren, Y. (2018). Solution layer-by-layer uniform thin film dip coating of nickel hydroxide and metal incorporated nickel hydroxide and its improved electrochromic performance. Solar Energy Materials and Solar Cells, 185, 318–324. doi: https://doi.org/10.1016/j.solmat.2018.05.044
  14. Al-Kahlout, A., Pawlicka, A., Aegerter, M. (2006). Brown coloring electrochromic devices based on NiO–TiO2 layers. Solar Energy Materials and Solar Cells, 90 (20), 3583–3601. doi: https://doi.org/10.1016/j.solmat.2006.06.053
  15. Jiao, Z., Wu, M., Qin, Z., Xu, H. (2003). The electrochromic characteristics of sol gel-prepared NiO thin film. Nanotechnology, 14 (4), 458–461. doi: https://doi.org/10.1088/0957-4484/14/4/310
  16. Dalavi, D. S., Devan, R. S., Patil, R. S., Ma, Y.-R., Patil, P. S. (2013). Electrochromic performance of sol–gel deposited NiO thin film. Materials Letters, 90, 60–63. doi: https://doi.org/10.1016/j.matlet.2012.08.108
  17. Martini, M., Brito, G. E. S., Fantini, M. C. A., Craievich, A. F., Gorenstein, A. (2001). Electrochromic properties of NiO-based thin films prepared by sol–gel and dip coating. Electrochimica Acta, 46 (13-14), 2275–2279. doi: https://doi.org/10.1016/s0013-4686(01)00396-6
  18. Ferreira, F. (1996). Electrochromic nickel oxide thin films deposited under different sputtering conditions. Solid State Ionics, 86-88, 971–976. doi: https://doi.org/10.1016/0167-2738(96)00236-6
  19. Chen, Y., Deng, H., Xu, Z., Luo, D., Zhu, Y., Zhao, S. (2014). Electrochromic Properties of Ni-W Oxide Thin Films by Reactive Magnetron Sputtering. Energy Procedia, 57, 1834–1841. doi: https://doi.org/10.1016/j.egypro.2014.10.047
  20. Crnjak Orel, Z., Hutchins, M. G., McMeeking, G. (1993). The electrochromic properties of hydrated nickel oxide films formed by colloidal and anodic deposition. Solar Energy Materials and Solar Cells, 30 (4), 327–337. doi: https://doi.org/10.1016/0927-0248(93)90110-o
  21. Sonavane, A. C., Inamdar, A. I., Shinde, P. S., Deshmukh, H. P., Patil, R. S., Patil, P. S. (2010). Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 489 (2), 667–673. doi: https://doi.org/10.1016/j.jallcom.2009.09.146
  22. Chen, N., Su, G., Liu, W., et. al. (2014). Electrodeposition and properties of Mn-doped NiO thin films. Journal of Materials Engineering, 11, 67–72.
  23. Umeokwonna, N. S., Ekpunobi, A. J., Ekwo, P. I. (2015). Effect of cobalt doping on the optical properties of nickel cobalt oxide nanofilms deposited by electrodeposition method. International Journal of Technical Research and Applications, 4 (3), 347–351. Available at: https://www.ijtra.com/view/effect-of-cobalt-doping-on-the-optical-properties-of-nickel-cobalt-oxide-nanofilms-deposited-by-electrodeposition-method.pdf?paper=effect-of-cobalt-doping-on-the-optical-properties-of-nickel-cobalt-oxide-nanofilms-deposited-by-electrodeposition-method.pdf
  24. Liao, C.-C. (2012). Lithium-driven electrochromic properties of electrodeposited nickel hydroxide electrodes. Solar Energy Materials and Solar Cells, 99, 26–30. doi: https://doi.org/10.1016/j.solmat.2011.12.001
  25. Niklasson, G. A., Wen, R.-T., Qu, H.-Y., Arvizu, M. A., Granqvist, C.-G. (2017). (Invited) Durability of Electrochromic Films: Aging Kinetics and Rejuvenation. ECS Transactions, 77 (11), 1659–1669. doi: https://doi.org/10.1149/07711.1659ecst
  26. Qu, H.-Y., Primetzhofer, D., Arvizu, M. A., Qiu, Z., Cindemir, U., Granqvist, C. G., Niklasson, G. A. (2017). Electrochemical Rejuvenation of Anodically Coloring Electrochromic Nickel Oxide Thin Films. ACS Applied Materials & Interfaces, 9 (49), 42420–42424. doi: https://doi.org/10.1021/acsami.7b13815
  27. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
  28. Ragan, D. D., Svedlindh, P., Granqvist, C. G. (1998). Electrochromic Ni oxide films studied by magnetic measurements. Solar Energy Materials and Solar Cells, 54 (1-4), 247–254. doi: https://doi.org/10.1016/s0927-0248(98)00076-2
  29. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  30. Кovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  31. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  32. Tan, Y., Srinivasan, S., Choi, K.-S. (2005). Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 127 (10), 3596–3604. doi: https://doi.org/10.1021/ja0434329
  33. Gu, W., Liao, L. S., Cai, S. D., Zhou, D. Y., Jin, Z. M., Shi, X. B., Lei, Y. L. (2012). Adhesive modification of indium–tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 258 (20), 8139–8145. doi: https://doi.org/10.1016/j.apsusc.2012.05.009
  34. Kotok, V., Kovalenko, V. (2020). A study of the influence of polyvinyl pyrrolidone concentration in the deposition electrolyte on the properties of electrochromic Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 4 (6 (106)), 31–37. doi: https://doi.org/10.15587/1729-4061.2020.210857
  35. Thomas, D., Cebe, P. (2016). Self-nucleation and crystallization of polyvinyl alcohol. Journal of Thermal Analysis and Calorimetry, 127 (1), 885–894. doi: https://doi.org/10.1007/s10973-016-5811-1
  36. Aslam, M., Kalyar, M. A., Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science, 58 (12), 2119–2132. doi: https://doi.org/10.1002/pen.24855
  37. Chana, J., Forbes, B., Jones, S. A. (2008). The Synthesis of High Molecular Weight Partially Hydrolysed Poly(vinyl alcohol) Grades Suitable for Nanoparticle Fabrication. Journal of Nanoscience and Nanotechnology, 8 (11), 5739–5747. doi: https://doi.org/10.1166/jnn.2008.475
  38. Dunn, A. S., Naravane, S. R. (1980). Structural Differences Between Similar Commercial Grades of Polyvinyl Alcohol-Acetate. British Polymer Journal, 12 (2), 75–77. doi: https://doi.org/10.1002/pi.4980120207
  39. Kawakami, H., Mori, N., Kawashima, K., Sumi, M. (1963). The relationship between manufacturing conditions of polyvinyl alcohol and the properties polyvinyl alcohol fibers. Sen’i Gakkaishi, 19 (3), 192–197. doi: https://doi.org/10.2115/fiber.19.192
  40. Henderson, B., Loveridge, N., Robertson, W. R. (1978). A quantitative study of the effects of different grades of polyvinyl alcohol on the activities of certain enzymes in unfixed tissue sections. The Histochemical Journal, 10 (4), 453–463. doi: https://doi.org/10.1007/bf01003008
  41. Brough, C., Miller, D. A., Keen, J. M., Kucera, S. A., Lubda, D., Williams, R. O. (2015). Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1). AAPS PharmSciTech, 17 (1), 167–179. doi: https://doi.org/10.1208/s12249-015-0458-y
  42. Niu, C., Wu, X., Ren, W., Chen, X., Shi, P. (2015). Mechanical properties of low k SiO2 thin films templated by PVA. Ceramics International, 41, S365–S369. doi: https://doi.org/10.1016/j.ceramint.2015.03.242
  43. Ecsedi, Z., Lazău, I., Păcurariu, C. (2007). Synthesis of mesoporous alumina using polyvinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: https://doi.org/10.2298/pac0702005e
  44. Pon-On, W., Meejoo, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 453–460. doi: https://doi.org/10.1016/j.matchemphys.2008.05.082
  45. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1395–1399. doi: https://doi.org/10.1007/s10934-016-0199-7
  46. Wanchanthu, R., Thapol, A. (2011). The Kinetic Study of Methylene Blue Adsorption over MgO from PVA Template Preparation. Journal of Environmental Science and Technology, 4 (5), 552–559. doi: https://doi.org/10.3923/jest.2011.552.559
  47. Parkhomchuk, E. V., Sashkina, K. A., Rudina, N. A., Kulikovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: https://doi.org/10.1134/s2070050412040150
  48. Kabita, B. et. al. (2015). Polypyrrole Nanonetwork Embedded in Polyvinyl Alcohol as Ammonia Gas Sensor. Res. J. Chem. Sci., 5 (5), 61–68.
  49. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  50. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  51. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binder­free electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4(12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899
  52. Kovalenko, V., Kotok, V. (2021). Synthesis of Ni(OH)2, suitable for supercapacitor application, by the cold template homogeneous precipitation method. Eastern-European Journal of Enterprise Technologies, 2(6 (110)), 45–51. doi: https://doi.org/10.15587/1729-4061.2021.227952
  53. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371
  54. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 9 (13), 3076–3086.
  55. Kotok, V., Kovalenko, V. (2021). Definition of the influence of pulsed deposition modes on the electrochromic properties of Ni(OH)2-polyvinyl alcohol films. Eastern-European Journal of Enterprise Technologies, 3 (6 (111)), 53–58. doi: https://doi.org/10.15587/1729-4061.2021.233510
  56. Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A., Burkov, A. А., Kobylinska, N. G., et. al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2-based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353.
  57. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  58. Kotok, V., Kovalenko, V. (2018). Investigation of the properties of Ni(OH)2 electrochrome films obtained in the presence of different types of polyvinyl alcohol. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 42–47. doi: https://doi.org/10.15587/1729-4061.2018.140560
  59. POVAL (PVOH). Available at: https://www.j-vp.co.jp/english/pva
  60. Basic Physical Properties of PVOH Resin. Available at: https://www.kuraray-poval.com/fileadmin/technical_information/brochures/poval/kuraray_poval_basic_physical_properties_web.pdf

##submission.downloads##

Опубліковано

2022-04-30

Як цитувати

Коваленко, В. Л., Kotok, V., Зіма, О. С., Нафєєв, Р. К., Вербицький, В. В., & Мельник, О. С. (2022). Визначення ролі полівінілового спирту при формуванні та в структурі катодно синтезованого композитного елетрохромного гідроксиднонікелевого шару: темплат або поверхнево-активна речовина . Eastern-European Journal of Enterprise Technologies, 2(12 (116), 6–14. https://doi.org/10.15587/1729-4061.2022.255482

Номер

Розділ

Матеріалознавство