Аналіз співвідношення Si/Al при розкладанні хлорогенової кислоти в індонезійському традиційному обжарюванні кави Kreweng для максимальної кислотності кави

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2022.260258

Ключові слова:

співвідношення Si/Al, кераміка Кревенг, мікроструктура, розкладання ХГК, кислотність кави

Анотація

Використання глиняних сковорідок знижує температуру обсмажування та надає продукту приємнішого смаку. Це дослідження розкриває роль частинок кераміки у розкладанні хлорогенової кислоти (ХГК) у процесі випалу. Це дослідження спрямоване на розробку керамічних каструль та процесу обсмажування, які оптимізують вміст ХГК та якість кави з використанням традиційної індонезійської кераміки з Баньюванги, Кревенг, Східна Ява. Кераміка була подрібнена до 74–1000 мкм перед активацією. Елементна, фазова та морфологічна характеристики виконуються на кавовому зерні. Морфологія, характерна для кераміки, спостерігалася далі з використанням техніки цифрового зображення, щоб виявити пори та межі. Вплив використання глиняного посуду на обсмажування кави також було перевірено за допомогою вимірювання рН кавового продукту. Морфологія кераміки визначає кислотність кавового продукту. Чим менший розмір частинок глиняного каталізатора, тим кислішою буде кава. Концентрація пір і меж зерен збільшується зі зменшенням розміру частинок. У той же час відношення Si/Al було вищим при меншому розмірі частинок каталізатора з більшою пористістю, межами зерен та поглинанням. Пористість та дефекти виявляють негативно заряджені грані граней керамічного кристала. Заряджені грані проявляються через вібрацію керамічного кристала у відповідь тепло під час процесу випалу. Ефективність поверхневого контакту є більшою за рахунок розподілу негативних зарядів навколо пір, що притягають OH- частинки ХГК. Ця взаємодія захоплює протон водню на провідній поверхні каталізатора. В результаті ХГК розпадається на кілька груп атомів та молекул, включаючи H2 та CO2. Взаємодія з каталізатором перетворює макроелемент на аліфатичну кислоту. Таким чином, середовище для обсмажування з більш високим співвідношенням Si/Al за менших розмірів частинок з великими мікропорами збільшить швидкість розкладання та кислотність кавових продуктів.

Біографії авторів

Ikhwanul Qiram, PGRI University Banyuwangi; Brawijaya University

Master of Engineering, Senior Lecturer, Doctoral Candidate

Department of Mechanical Engineering

Department of Mechanical Engineering

Nurkholis Hamidi, Brawijaya University

Doctor of Engineering, Associate Professor

Department of Mechanical Engineering

Lilis Yuliati, Brawijaya University

Doctor of Engineering, Associate Professor

Department of Mechanical Engineering

Willy Satrio Nugroho, Brawijaya University

Doctor of Engineering

Department of Industrial Engineering

I Nyoman Gede Wardana, Brawijaya University

Doctor of Engineering, Professor

Department of Mechanical Engineering

Посилання

  1. Noor Aliah, A. M., Fareez Edzuan, A. M., Noor Diana, A. M. (2015). A Review of Quality Coffee Roasting Degree Evaluation. Journal of Applied Science and Agriculture, 10 (7), 18–23. Available at: https://www.researchgate.net/publication/280627747_A_Review_of_Quality_Coffee_Roasting_Degree_Evaluation
  2. De Toledo, P. R. A. B., de Melo, M. M. R., Pezza, H. R., Toci, A. T., Pezza, L., Silva, C. M. (2017). Discriminant analysis for unveiling the origin of roasted coffee samples: A tool for quality control of coffee related products. Food Control, 73, 164–174. doi: https://doi.org/10.1016/j.foodcont.2016.08.001
  3. Higdon, J. V., Frei, B. (2006). Coffee and Health: A Review of Recent Human Research. Critical Reviews in Food Science and Nutrition, 46 (2), 101–123. doi: https://doi.org/10.1080/10408390500400009
  4. Tajik, N., Tajik, M., Mack, I., Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56 (7), 2215–2244. doi: https://doi.org/10.1007/s00394-017-1379-1
  5. Uman, E., Colonna-Dashwood, M., Colonna-Dashwood, L., Perger, M., Klatt, C., Leighton, S. et. al. (2016). The effect of bean origin and temperature on grinding roasted coffee. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep24483
  6. Fareez Edzuan, A. M., Noor Aliah, A. M., Bong, H. L. (2015). Physical and Chemical Property Changes of Coffee Beans during Roasting. American Journal of Chemistry, 5 (3A), 56–60. Available at: http://article.sapub.org/10.5923.c.chemistry.201501.09.html
  7. Belay, A., Gholap, A. V. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. African Journal of Pure and Applied Chemistry, 3 (11), 234–240. Available at: https://academicjournals.org/journal/AJPAC/article-full-text-pdf/0E5B4BA1938
  8. Çakır, S., Biçer, E., Yılmaz Arslan, E. (2015). A Newly Developed Electrocatalytic Oxidation and Voltammetric Determination of Curcumin at the Surface of PdNp-graphite Electrode by an Aqueous Solution Process with Al3+. Croatica Chemica Acta, 88 (2), 105–112. doi: https://doi.org/10.5562/cca2527
  9. Šeruga, M., Tomac, I. (2014). Electrochemical behaviour of some chlorogenic acids and their characterization in coffee by square-wave voltammetry. International Journal of Electrochemical Science, 9 (11), 6134–6154. Available at: https://www.researchgate.net/publication/266494182_Electrochemical_Behaviour_of_Some_Chlorogenic_Acids_and_Their_Characterization_in_Coffee_by_Square-Wave_Voltammetry
  10. Maggetti, M. (1982). Phase analysis and its significance for technology and origin. Smithsonian Institution Press. Available at: https://www.academia.edu/40783239/Phase_Analysis_and_its_Significance_for_Technology_and_Origin
  11. Yang, C., Hu, C., Xiang, C., Nie, H., Gu, X., Xie, L. et. al. (2021). Interfacial superstructures and chemical bonding transitions at metal-ceramic interfaces. Science Advances, 7 (11). doi: https://doi.org/10.1126/sciadv.abf6667
  12. Ion, R.-M., Fierascu, R.-C., Teodorescu, S., Fierascu, I., Bunghez, I.-R., Turcanu-Carutiu, D., Ion, M.-L. (2016). Ceramic Materials Based on Clay Minerals in Cultural Heritage Study. Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals. doi: https://doi.org/10.5772/61633
  13. Sposito, G., Sommers, L. E. (1985). Chemical models of inorganic pollutants in soils. Critical Reviews in Environmental Control, 15 (1), 1–24. doi: https://doi.org/10.1080/10643388509381725
  14. Melar, J., Bednarik, V., Slavik, R., Pastorek, M. (2013). Effect of hydrothermal treatment on the structure of an aluminosilicate polymer. Open Chemistry, 11 (5), 782–789. doi: https://doi.org/10.2478/s11532-013-0204-9
  15. Geraldo, R. H., Camarini, G. (2015). Geopolymers Studies in Brazil: A Meta-Analysis and Perspectives. International Journal of Engineering and Technology, 7 (5), 390–396. doi: https://doi.org/10.7763/ijet.2015.v7.825
  16. Bhatt, K. N., Halligudi, S. B. (1994). Hydroformylation of allyl alcohol catalysed by (Rh(PPh3)3)+/montmorillonite: A kinetic study. Journal of Molecular Catalysis, 91 (2), 187–194. doi: https://doi.org/10.1016/0304-5102(94)00036-0
  17. Münchow, M., Alstrup, J., Steen, I., Giacalone, D. (2020). Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation. Beverages, 6 (2), 29. doi: https://doi.org/10.3390/beverages6020029
  18. Dias, R., Benassi, M. (2015). Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages, 1 (3), 127–139. doi: https://doi.org/10.3390/beverages1030127
  19. Alstrup, J., Petersen, M. A., Larsen, F. H., Münchow, M. (2020). The Effect of Roast Development Time Modulations on the Sensory Profile and Chemical Composition of the Coffee Brew as Measured by NMR and DHS-GC–MS. Beverages, 6 (4), 70. doi: https://doi.org/10.3390/beverages6040070
  20. Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. doi: https://doi.org/10.1016/j.foodchem.2016.04.124
  21. Rostagno, M. A., Celeghini, R. M. S., Debien, I. C. N., Nogueira, G. C., Meireles, M. A. A. (2015). Phenolic Compounds in Coffee Compared to Other Beverages. Coffee in Health and Disease Prevention, 137–142. doi: https://doi.org/10.1016/b978-0-12-409517-5.00015-2
  22. Yeager, S. E., Batali, M. E., Guinard, J.-X., Ristenpart, W. D. (2021). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 1–27. doi: https://doi.org/10.1080/10408398.2021.1957767
  23. Saeed Alkaltham, M., Musa Özcan, M., Uslu, N., Salamatullah, A. M., Hayat, K. (2020). Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. Journal of Food Processing and Preservation, 44 (11). doi: https://doi.org/10.1111/jfpp.14874
  24. Mohorič, T., Bren, U. (2020). How does microwave irradiation affect the mechanism of water reorientation? Journal of Molecular Liquids, 302, 112522. doi: https://doi.org/10.1016/j.molliq.2020.112522
  25. Mitsudo, S., Sako, K., Tani, S., Sudiana, I. N. (2011). High power pulsed submillimeter wave sintering of zirconia ceramics. 2011 International Conference on Infrared, Millimeter, and Terahertz Waves. doi: https://doi.org/10.1109/irmmw-thz.2011.6105135
  26. Gordienko, P. S., Shabalin, I. A., Yarusova, S. B., Slobodyuk, A. B., Somova, S. N. (2017). Composition, structure, and morphology of nanostructured aluminosilicates. Theoretical Foundations of Chemical Engineering, 51 (5), 763–768. doi: https://doi.org/10.1134/s0040579517050104
  27. Cui, X.-M., Zheng, G.-J., Han, Y.-C., Su, F., Zhou, J. (2008). A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials. Journal of Power Sources, 184 (2), 652–656. doi: https://doi.org/10.1016/j.jpowsour.2008.03.021
  28. Suryanarayana, C. (2004). Mechanical Alloying And Milling. CRC Press, 488. doi: https://doi.org/10.1201/9780203020647
  29. Konar, D., Bhattacharyya, S., Panigrahi, B. K., Ghose, M. K. (2017). An efficient pure color image denoising using quantum parallel bidirectional self-organizing neural network architecture. Quantum Inspired Computational Intelligence, 149–205. doi: https://doi.org/10.1016/b978-0-12-804409-4.00005-x
  30. Basavaraj, K., Gopinandhan, T. N., Gupta, N., Banakar, M. (2014). Relationship between Sensory Perceived Acidity and Instrumentally Measured Acidity in Indian Coffee Samples. J. Nutr. Diet., 51, 286. doi: https://doi.org/10.13140/RG.2.2.29177.52328
  31. Al-Sehemi, A. G., Al-Ghamdi, A. A., Dishovsky, N., Nickolov, R. N., Atanasov, N. T., Manoilova, L. T. (2017). Effect of Activated Carbons on the Dielectric and Microwave Properties of Natural Rubber Based Composites. Materials Research, 20 (5), 1211–1220. doi: https://doi.org/10.1590/1980-5373-mr-2017-0378
  32. Belver, C., Bañares Muñoz, M. A., Vicente, M. A. (2002). Chemical Activation of a Kaolinite under Acid and Alkaline Conditions. Chemistry of Materials, 14 (5), 2033–2043. doi: https://doi.org/10.1021/cm0111736
  33. Ungár, T. (2004). Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51 (8), 777–781. doi: https://doi.org/10.1016/j.scriptamat.2004.05.007
  34. Khatamian, M., Irani, M. (2009). Preparation and characterization of nanosized ZSM-5 zeolite using kaolin and investigation of kaolin content, crystallization time and temperature changes on the size and crystallinity of products. Journal of the Iranian Chemical Society, 6 (1), 187–194. doi: https://doi.org/10.1007/bf03246519
  35. Postek, M. T., Vladár, A. E. (2015). Does your SEM really tell the truth? How would you know? Part 4: Charging and its mitigation. Scanning Microscopies 2015. doi: https://doi.org/10.1117/12.2195344
  36. Funabashi, H., Takeuchi, S., Tsujimura, S. (2017). Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/srep45147
  37. Kaur, P., Park, Y., Sillanpää, M., Imteaz, M. A. (2021). Synthesis of a novel SnO2/graphene-like carbon/TiO2 electrodes for the degradation of recalcitrant emergent pharmaceutical pollutants in a photo-electrocatalytic system. Journal of Cleaner Production, 313, 127915. doi: https://doi.org/10.1016/j.jclepro.2021.127915
  38. Narodny, L., Feynman, R. (1991). QED: The Strange Theory of Light and Matter. Leonardo, 24 (4), 493. doi: https://doi.org/10.2307/1575549
  39. Purnami, Hamidi, N., Sasongko, M. N., Widhiyanuriyawan, D., Wardana, I. N. G. (2020). Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis. International Journal of Hydrogen Energy, 45 (38), 19370–19380. doi: https://doi.org/10.1016/j.ijhydene.2020.05.148
  40. Willy Satrio, N., Winarto, Sugiono, Wardana, I. N. G. (2020). Hydrogen production from instant noodle wastewater by organic electrocatalyst coated on PVC surface. International Journal of Hydrogen Energy, 45 (23), 12859–12873. doi: https://doi.org/10.1016/j.ijhydene.2020.03.002
  41. Satrio, N. W., Winarto, Sugiono, Wardana, I. N. G. (2020). The role of turmeric and bicnat on hydrogen production in porous tofu waste suspension electrolysis. Biomass Conversion and Biorefinery, 12 (7), 2417–2429. doi: https://doi.org/10.1007/s13399-020-00803-0
  42. Wright, A. D., Verdi, C., Milot, R. L., Eperon, G. E., Pérez-Osorio, M. A., Snaith, H. J. et. al. (2016). Electron–phonon coupling in hybrid lead halide perovskites. Nature Communications, 7 (1). doi: https://doi.org/10.1038/ncomms11755
  43. Melloni, A., Rossi Paccani, R., Donati, D., Zanirato, V., Sinicropi, A., Parisi, M. L. et. al. (2010). Modeling, Preparation, and Characterization of a Dipole Moment Switch Driven by Z/E Photoisomerization. Journal of the American Chemical Society, 132 (27), 9310–9319. doi: https://doi.org/10.1021/ja906733q
  44. Siswanto, E., Rifan, A. Z., Purnami, Widhiyanuriyawan, D., Darmadi, D. B. (2019). The Effect of Porosity on The Temperature Spectrum Area and Heat Transfer in Chamber with Porous Media Under the Saturated Vapour Flow. IOP Conference Series: Materials Science and Engineering, 494, 012071. doi: https://doi.org/10.1088/1757-899x/494/1/012071
  45. Fernandes, L. D., Bartl, P. E., Monteiro, J. F., da Silva, J. G., de Menezes, S. C., Cardoso, M. J. B. (1994). The effect of cyclic dealumination of mordenite on its physicochemical and catalytic properties. Zeolites, 14 (7), 533–540. doi: https://doi.org/10.1016/0144-2449(94)90187-2
  46. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
  47. Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of the dependence of the structure of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, on synthesis conditions. Eastern-European Journal of Enterprise Technologies, 1 (12 (115)), 12–20. doi: https://doi.org/10.15587/1729-4061.2022.252738
  48. Purnami, P., Hamidi, N., Nur Sasongko, M., Siswanto, E., Widhiyanuriyawan, D., Pambudi Tama, I. et. al. (2022). Enhancement of hydrogen production using dynamic magnetic field through water electrolysis. International Journal of Energy Research, 46 (6), 7309–7319. doi: https://doi.org/10.1002/er.7638
  49. Serik, M., Samokhvalova, O., Kholobtseva, I., Fedak, N., Bolkhovitina, O., Sova, N., Chornei, K. (2021). Determining the influence of protein-mineral additives on the properties of butter cookies emulsion. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 42–49. doi: https://doi.org/10.15587/1729-4061.2021.237890

##submission.downloads##

Опубліковано

2022-08-31

Як цитувати

Qiram, I., Hamidi, N., Yuliati, L., Nugroho, W. S., & Wardana, I. N. G. (2022). Аналіз співвідношення Si/Al при розкладанні хлорогенової кислоти в індонезійському традиційному обжарюванні кави Kreweng для максимальної кислотності кави. Eastern-European Journal of Enterprise Technologies, 4(6(118), 22–37. https://doi.org/10.15587/1729-4061.2022.260258

Номер

Розділ

Технології органічних та неорганічних речовин