Профільний моніторинг контрольних карт залишків за моделю гамма-регресії

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2022.264904

Ключові слова:

СДЦ, контрольні карти, ЕЗКС, УЛМ, гамма-регресія, залишки

Анотація

Статистична контрольна карта вважається одним із найкращих інструментів контролю якості. Нині контрольні карти знаходять широке застосування у різних галузях, зокрема у виробничих процесах. Вони є важливими інструментами, які можуть дати контролерам якості важливу інформацію для підтримки продуктивності. Якість продукту чи процесу можна охарактеризувати взаємозв’язком між двома чи більше змінними, яку зазвичай називають профілем. Також ще одним важливим напрямком, у якому широко використовуються контрольні картки, вважається нагляд за здоров’ям населення. У зв’язку з цим вони є дуже корисними та надійними інструментами для виявлення спалахів інфекційних захворювань. З іншого боку, модель гамма-регресії (МГР) є популярною моделлю, яка використовується в медицині та інших галузях. Вона застосовується, коли змінна відгуку є безперервною, з позитивною асиметрією і добре відповідає гамма-розподілу. У цій роботі представлена схема моніторингу профілю. На основі узагальненої лінійної моделі (УЛМ) у разі двох функцій зв’язку: тотожної та логарифмічної функції зв’язку. Пропонуються контрольні карти експоненційно зваженого ковзного середнього (ЕЗКС) з використанням залишків відхилення та залишків Пірсона для виявлення будь-якого порушення контрольної змінної моделі гамма-регресії. Детальне дослідження моделювання призначене для ретельного вивчення та оцінки ефективності контрольних карт на етапі аналізу I та на етапі II при параметричній оцінці максимальної правдоподібності (ОМП) з використанням показника середньої довжини циклу (СДЦ). Виявляється, використання залишків відхилення функції зв’язку тотожності здається більш придатним, ніж залишки Пірсона. Крім того, зі збільшенням розміру вибірки відсоток неконтрольованих зразків збільшувався, що теоретично прийнятно

Біографії авторів

Salah Mohamed, Cairo University

Professor, Doctor of Applied Statistics

Department of Applied Statistics and Econometrics

Engy Mohamed, Cairo University

Master of Statistics, Lecturer

Department of Applied Statistics and Econometrics

Shereen Abdel Latif, Cairo University

PhD, Assistant Professor

Department of Applied Statistics and Econometrics

Посилання

  1. Mahmoud, M. A. (2011). Simple Linear Profiles. Statistical Analysis of Profile Monitoring, 21–92. doi: https://doi.org/10.1002/9781118071984.ch2
  2. Mahmoud, M. A. (2012). The Performance of Phase II Simple Linear Profile Approaches when Parameters Are Estimated. Communications in Statistics - Simulation and Computation, 41 (10), 1816–1833. doi: https://doi.org/10.1080/03610918.2011.621570
  3. Amiri, A., Koosha, M., Azhdari, A., Wang, G. (2014). Phase I monitoring of generalized linear model-based regression profiles. Journal of Statistical Computation and Simulation, 85 (14), 2839–2859. doi: https://doi.org/10.1080/00949655.2014.942864
  4. Noorossana, R., Eyvazian, M., Vaghefi, A. (2010). Phase II monitoring of multivariate simple linear profiles. Computers & Industrial Engineering, 58 (4), 563–570. doi: https://doi.org/10.1016/j.cie.2009.12.003
  5. Mahmoud, M. A., Saad, A. E. N., El Shaer, R. (2014). Phase II Multiple Linear Regression Profile with Small Sample Sizes. Quality and Reliability Engineering International, 31 (5), 851–861. doi: https://doi.org/10.1002/qre.1644
  6. Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1 (3), 239–250. doi: https://doi.org/10.1080/00401706.1959.10489860
  7. Crowder, S. V. (1987). A Program for the Computation of ARL for Combined Individual Measurement and Moving Range Charts. Journal of Quality Technology, 19 (2), 103–106. doi: https://doi.org/10.1080/00224065.1987.11979046
  8. Lucas, J. M., Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32 (1), 1–12. doi: https://doi.org/10.1080/00401706.1990.10484583
  9. Woodall, W. H., Spitzner, D. J., Montgomery, D. C., Gupta, S. (2004). Using Control Charts to Monitor Process and Product Quality Profiles. Journal of Quality Technology, 36 (3), 309–320. doi: https://doi.org/10.1080/00224065.2004.11980276
  10. Knoth, S. (2007). Accurate ARL Calculation for EWMA Control Charts Monitoring Normal Mean and Variance Simultaneously. Sequential Analysis, 26 (3), 251–263. doi: https://doi.org/10.1080/07474940701404823
  11. Maravelakis, P. E., Castagliola, P., Khoo, M. B. C. (2017). Run length properties of run rules EWMA chart using integral equations. Quality Technology & Quantitative Management, 16 (2), 129–139. doi: https://doi.org/10.1080/16843703.2017.1372853
  12. Khan, N., Yasmin, T., Aslam, M., Jun, C.-H. (2018). On the performance of modified EWMA charts using resampling schemes. Operations Research and Decisions, 3, 29–43. doi: https://doi.org/10.5277/ord180303
  13. Akram, M. N., Amin, M., Qasim, M. (2021). A new biased estimator for the gamma regression model: Some applications in medical sciences. Communications in Statistics - Theory and Methods, 50 (23), 1–21. doi: https://doi.org/10.1080/03610926.2021.1977958
  14. Krishnamoorthy, K. (2006). Handbook of statistical distributions with applications. Chapman and Hall/CRC, 376. doi: https://doi.org/10.1201/9781420011371
  15. Jearkpaporn, D., Montgomery, D. C., Runger, G. C., Borror, C. M. (2003). Process monitoring for correlated gamma-distributed data using generalized-linear-model-based control charts. Quality and Reliability Engineering International, 19 (6), 477–491. doi: https://doi.org/10.1002/qre.521
  16. Braimah, O. J., Osanaiye, P. A., Omaku, P. E., Saheed, Y. K., Eshimokhai, S. A. (2014). On the Use of Exponentially Weighted Moving Average (Ewma) Contrl Chart in Monitoring Road Traffic Crashes. International Journal of Mathematics and Statistics Invention (IJMSI), 2 (5), 01–09. Available at: https://ijmsi.org/Papers/Volume.2.Issue.5/A0250109.pdf
  17. Cepeda-Cuervo‎, E., Corrales, M., Cifuentes,‎ ‎V., Zarate, H. (2016). On Gamma Regression Residuals. Journal of The Iranian Statistical Society, 15 (1), 29–44. Available at: http://jirss.irstat.ir/browse.php?a_code=A-11-304-2&slc_lang=en&sid=1
  18. Lu, C.-W., Reynolds, M. R. (1999). EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes. Journal of Quality Technology, 31 (2), 166–188. doi: https://doi.org/10.1080/00224065.1999.11979913
  19. Wang, H. (2016). Application of Residual-Based EWMA Control Charts for Detecting Faults in Variable-Air-Volume Air Handling Unit System. Journal of Control Science and Engineering, 2016, 1–7. doi: https://doi.org/10.1155/2016/1467823
  20. Kang, L., Albin, S. L. (2000). On-Line Monitoring When the Process Yields a Linear Profile. Journal of Quality Technology, 32 (4), 418–426. doi: https://doi.org/10.1080/00224065.2000.11980027
  21. Messaoud, A., Theis, W., Hering, F., Weihs, C. (2008). Monitoring a Drilling Process Using Residual Control Charts. Quality Engineering, 21 (1), 1–9. doi: https://doi.org/10.1080/08982110802355869
  22. Areepong, Y. (2013). A comparison of performance of residual control charts for trend stationary AR(p) processes. International Journal of Pure and Apllied Mathematics, 85 (3). doi: https://doi.org/10.12732/ijpam.v85i3.13
  23. García-Bustos, S., Cárdenas-Escobar, N., Debón, A., Pincay, C. (2021). A control chart based on Pearson residuals for a negative binomial regression: application to infant mortality data. International Journal of Quality & Reliability Management, 39 (10), 2378–2399. doi: https://doi.org/10.1108/ijqrm-03-2021-0062
  24. Jamal, A., Mahmood, T., Riaz, M., Al-Ahmadi, H. M. (2021). GLM-Based Flexible Monitoring Methods: An Application to Real-Time Highway Safety Surveillance. Symmetry, 13 (2), 362. doi: https://doi.org/10.3390/sym13020362
  25. Kinat, S., Amin, M., Mahmood, T. (2019). GLM‐based control charts for the inverse Gaussian distributed response variable. Quality and Reliability Engineering International, 36 (2), 765–783. doi: https://doi.org/10.1002/qre.2603
  26. Nelder, J. A., Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135 (3), 370. doi: https://doi.org/10.2307/2344614
  27. McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall/CRC. doi: https://doi.org/10.1007/978-1-4899-3242-6
  28. Bossio, M. C., Cuervo, E. C. (2015). Gamma regression models with the Gammareg R package. Comunicaciones En Estadística, 8 (2), 211. doi: https://doi.org/10.15332/s2027-3355.2015.0002.05
  29. Cuervo, E. C. (2001). Modelagem da Variabilidade em Modelos Lineares Generalizados. Instituto de Matemáticas, Universidade Federal do Río do Janeiro.
  30. Gipe, G. W. (1976). Using residual analysis to search for specification errors. Decision Sciences, 7 (1), 40–56. doi: https://doi.org/10.1111/j.1540-5915.1976.tb00656.x
  31. Shao, Y. E., Lin, Y. (2013). Applying Residual Control Charts to Identify the False Alarms in a TFT-LCD Manufacturing Process. Applied Mathematics & Information Sciences, 7 (4), 1459–1464. doi: https://doi.org/10.12785/amis/070426
  32. Pregibon, D. (1981). Logistic Regression Diagnostics. The Annals of Statistics, 9 (4). https://doi.org/10.1214/aos/1176345513
  33. Cordeiro, G. M., Simas, A. B. (2009). The distribution of Pearson residuals in generalized linear models. Computational Statistics & Data Analysis, 53 (9), 3397–3411. doi: https://doi.org/10.1016/j.csda.2009.02.025
  34. Pierce, D. A., Schafer, D. W. (1986). Residuals in Generalized Linear Models. Journal of the American Statistical Association, 81 (396), 977–986. doi: https://doi.org/10.1080/01621459.1986.10478361
Профільний моніторинг контрольних карт залишків за моделю гамма-регресії

##submission.downloads##

Опубліковано

2022-12-30

Як цитувати

Mohamed, S., Mohamed, E., & Abdel Latif, S. (2022). Профільний моніторинг контрольних карт залишків за моделю гамма-регресії . Eastern-European Journal of Enterprise Technologies, 6(4 (120), 23–31. https://doi.org/10.15587/1729-4061.2022.264904

Номер

Розділ

Математика та кібернетика - прикладні аспекти