Придушення корозії нержавіючої сталі 303 методом автоматичного катодного захисту зовнішнім струмом (ICCP) в штучній морській воді
DOI:
https://doi.org/10.15587/1729-4061.2022.267264Ключові слова:
швидкість корозії, катодний захист зовнішнім струмом (ICCP), штучна морська вода, нержавіюча сталь 303Анотація
Одним із ефективних методів уповільнення швидкості корозії металу є система катодного захисту зовнішнім струмом (ICCP). Система ICCP ефективна для використання у прибережних зонах, таких як трубопровідні системи та морські споруди. В даному випадку металеві поверхні, як правило, піддаються впливу морської води. Певні концентрації морської води можуть прискорити виникнення корозії металів, навіть якщо вони відносяться до типу нержавіючої сталі. У дослідженні застосовувалася автоматична система ICCP для нержавіючої сталі 303. Нержавіюча сталь 303 буде занурена в штучну морську воду за різних концентрацій NaCl (27 ppt, 31 ppt і 35 ppt). Зразки занурювали у розчин NaCl на три тижні або близько 504 годин при постійній температурі 38 °C. Після замочування зразка проводили кількісні та якісні вимірювання. Кількісні показники включають середню втрату ваги, швидкість корозії та значення потенціалу. У той же час якісні вимірювання включають макроскопію, скануючу електронну мікроскопію (SEM) та енергодисперсійну рентгенівську спектроскопію (EDS). На підставі кількісних показників було встановлено, що різниця в середній втраті ваги та швидкості корозії для кожної концентрації NaCl була не дуже істотною. Різниця за кожним параметром становить менше 0,1 % і 0,22 % відповідно. Значення потенціалу швидко досягає стійкого стану за концентрацій NaCl 27 ppt і 31 ppt менш ніж за 10 секунд. Результати SEM-випробувань показали зміну структури металу. Вміст кисню (O) у металі після EDS-випробувань показав зниження даного елемента до 35 % за концентрації NaCl 35 ppt. Зменшення вмісту кисню (O) дозволяє уповільнити швидкість корозії металів під впливом морської води.
Спонсор дослідження
- This research is supported by the Mechanical Engineering Laboratory, Hasanuddin University, the Jakarta National Nuclear Energy Agency laboratory, and the Mechanical Engineering Laboratory, Sepuluh November Institute Surabaya.
Посилання
- Roberge, P. R. (2012). Handbook of corrosion engineering. McGraw-Hill Education. Available at: https://www.accessengineeringlibrary.com/content/book/9780071750370
- Xiao, J., Chaudhuri, S. (2011). Predictive modeling of localized corrosion: An application to aluminum alloys. Electrochimica Acta, 56 (16), 5630–5641. doi: https://doi.org/10.1016/j.electacta.2011.04.019
- Roberge, P. R. (2008). Corrosion engineering. McGraw-Hill. Available at: https://www.accessengineeringlibrary.com/content/book/9780071482431
- Technical Handbook of Stainless Steels (2021). Atlas Steels. Available at: https://atlassteels.com.au/wp-content/uploads/2021/08/Atlas-Steels-Technical-Handbook-of-Stainless-Steels-12-08-21.pdf
- Troconis, B. C., Sharp, S. R., Ozyildirim, H. C., Demarest, C. R., Wright, J., Scully, J. R. (2020). Corrosion-resistant stainless steel strands for prestressed bridge piles in marine atmospheric environments. Available at: https://trid.trb.org/view/1693224
- Kaban, A. P. S., Ridhova, A., Priyotomo, G., Elya, B., Maksum, A., Sadeli, Y. et al. (2021). Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution. Eastern-European Journal of Enterprise Technologies, 2 (6 (110)), 6–20. doi: https://doi.org/10.15587/1729-4061.2021.224435
- Bai, G., Lu, S., Li, D., Li, Y. (2016). Influences of niobium and solution treatment temperature on pitting corrosion behaviour of stabilised austenitic stainless steels. Corrosion Science, 108, 111–124. doi: https://doi.org/10.1016/j.corsci.2016.03.009
- Loto, R. T. (2013). Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. Journal of Materials and Environmental Science, 4 (4), 448–459. Available at: https://www.researchgate.net/publication/272621606_Pitting_corrosion_evaluation_of_austenitic_stainless_steel_type_304_in_acid_chloride_media
- Loto, R. T., Loto, C. A., Popoola, A. P. I., Ranyaoa, M. (2012). Corrosion resistance of austenitic stainless steel in sulphuric acid. International Journal of Physical Sciences, 7 (10). doi: https://doi.org/10.5897/ijps11.1580
- Iliyasu, I., Yawas, D. S., Aku, S. Y. (2012). Corrosion behavior of austenitic stainless steel in sulphuric acid at various concentrations. Advances in Applied Science Research, 3 (6), 3909–3915. Available at: https://www.primescholars.com/articles/corrosion-behavior-of-austenitic-stainless-steel-in-sulphuric-acid-atvarious-concentrations.pdf
- Xu, L., Xin, Y., Ma, L., Zhang, H., Lin, Z., Li, X. (2021). Challenges and solutions of cathodic protection for marine ships. Corrosion Communications, 2, 33–40. doi: https://doi.org/10.1016/j.corcom.2021.08.003
- Bahekar, P. V., Gadve, S. S. (2017). Impressed current cathodic protection of rebar in concrete using Carbon FRP laminate. Construction and Building Materials, 156, 242–251. doi: https://doi.org/10.1016/j.conbuildmat.2017.08.145
- Evgeny, B., Hughes, T., Eskin, D. (2016). Effect of surface roughness on corrosion behaviour of low carbon steel in inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corrosion Science, 103, 196–205. doi: https://doi.org/10.1016/j.corsci.2015.11.019
- Zheng, Z. B., Zheng, Y. G., Zhou, X., He, S. Y., Sun, W. H., Wang, J. Q. (2014). Determination of the critical flow velocities for erosion–corrosion of passive materials under impingement by NaCl solution containing sand. Corrosion Science, 88, 187–196. doi: https://doi.org/10.1016/j.corsci.2014.07.043
- Liang, J., Deng, A., Xie, R., Gomez, M., Hu, J., Zhang, J. et al. (2013). Impact of flow rate on corrosion of cast iron and quality of re-mineralized seawater reverse osmosis (SWRO) membrane product water. Desalination, 322, 76–83. doi: https://doi.org/10.1016/j.desal.2013.05.001
- Vasyliev, G. S. (2015). The influence of flow rate on corrosion of mild steel in hot tap water. Corrosion Science, 98, 33–39. doi: https://doi.org/10.1016/j.corsci.2015.05.007
- Kim, Y.-S., Seok, S., Lee, J.-S., Lee, S. K., Kim, J.-G. (2018). Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods. Engineering Analysis with Boundary Elements, 96, 84–93. doi: https://doi.org/10.1016/j.enganabound.2018.08.012
- Lauria, D., Minucci, S., Mottola, F., Pagano, M., Petrarca, C. (2018). Active cathodic protection for HV power cables in undersea application. Electric Power Systems Research, 163, 590–598. doi: https://doi.org/10.1016/j.epsr.2017.11.016
- Jeong, J. A., Jin, C. K. (2014). Experimental Studies of Effectiveness of Hybrid Cathodic Protection System on the Steel in Concrete. Science of Advanced Materials, 6 (10), 2165–2170. doi: https://doi.org/10.1166/sam.2014.2061
- Wilson, K., Jawed, M., Ngala, V. (2013). The selection and use of cathodic protection systems for the repair of reinforced concrete structures. Construction and Building Materials, 39, 19–25. doi: https://doi.org/10.1016/j.conbuildmat.2012.05.037
- Qiao, G., Guo, B., Ou, J. (2017). Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures. Journal of Materials in Civil Engineering, 29 (6). doi: https://doi.org/10.1061/(asce)mt.1943-5533.0001837
- Zhu, J.-H., Wei, L., Moahmoud, H., Redaelli, E., Xing, F., Bertolini, L. (2017). Investigation on CFRP as dual-functional material in chloride-contaminated solutions. Construction and Building Materials, 151, 127–137. doi: https://doi.org/10.1016/j.conbuildmat.2017.05.213
- Christodoulou, C., Glass, G., Webb, J., Austin, S., Goodier, C. (2010). Assessing the long term benefits of Impressed Current Cathodic Protection. Corrosion Science, 52 (8), 2671–2679. doi: https://doi.org/10.1016/j.corsci.2010.04.018
- Li, S., Zhang, L., Wang, Y., Hu, P., Jiang, N., Guo, P. et al. (2021). Effect of cathodic protection current density on corrosion rate of high-strength steel wires for stay cable in simulated dynamic marine atmospheric rainwater. Structures, 29, 1655–1670. doi: https://doi.org/10.1016/j.istruc.2020.12.028
- Jusoh, S. M., Nik, W. M. N. W., Azman, N. A., Zulkifli, M. F. R. (2020). Corrosion Behavior of Low-Carbon Steel and Stainless Steel 304 Under Two Soil Conditions at Pantai Mengabang Telipot, Terengganu, Malaysia. Malaysian Journal of Analytical Sciences, 24 (6), 954–969. Available at: https://mjas.analis.com.my/mjas/v24_n6/pdf/Suriani_24_6_14.pdf
- Thomas, S., Ott, N., Schaller, R. F., Yuwono, J. A., Volovitch, P., Sundararajan, G. et al. (2016). The effect of absorbed hydrogen on the dissolution of steel. Heliyon, 2 (12), e00209. doi: https://doi.org/10.1016/j.heliyon.2016.e00209
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Hamsir, Onny Sutresman, Hairul Arsyad, Muhammad Syahid, Agus Widyianto
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.