Вбудовані моделі на основі DCNN для паралельної діагностики захворювань очей

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.281790

Ключові слова:

очні захворювання, візуалізація очного дна, оптична когерентна томографія, глибоке навчання, багатозначні вбудовані архітектури, паралельна архітектура, трансферне навчання, ODIR, навчання, перевірка

Анотація

Для виявлення різних захворювань очей за знімками очного дна необхідна автоматизована система виявлення очних захворювань за допомогою комп'ютерних інструментів. Це пов'язано з тим, що діагностика очних захворювань вручну є складним, трудомістким і схильним до помилок процесом. У дослідженні для розпізнавання та класифікації очних захворювань запропоновано дві багатозначні вбудовані архітектури на основі стратегії глибокого навчання. Для цих моделей був використаний набір даних ODIR (інтелектуальне розпізнавання очних захворювань). Запропоновані розробки реалізовані у вигляді паралельних систем. Перша модель була розроблена як паралельна вбудована система, що використовує трансферне навчання для реалізації своїх класифікаторів. При реалізації цих класифікаторів використовувалася мережа глибокого навчання VGG16, тоді як друга модель представлена з паралельною архітектурою, а її класифікатори реалізовані на основі нових запропонованих мереж глибокого навчання. Дані мережі відрізняються невеликим розміром, обмеженою кількістю шарів, швидкодією та точністю. Таким чином, нова запропонована розробка має ряд переваг, таких як невеликий розмір мережі класифікації (20 % VGG16), висока швидкодія та знижене енергоспоживання, а також придатність для IoT-додатків, що підтримують інтелектуальні системи, такі як Raspberry Pi, та автономні компоненти, що мають здатність функціонувати поки заряджений акумулятор. В обох запропонованих моделях для виявлення і класифікації такого очного захворювання як короткозорість була отримана найвища точність 0,9974 і 0,96. У порівнянні з дослідженнями, представленими в тій же області, точність кожної з двох показаних моделей була високою. Для реалізації обох запропонованих вбудованих моделей використовується комплект розробника Jetson Nano P3448-0000

Спонсор дослідження

  • The researchers would like to extend their thanks and appreciation to Ninevah University/College of Electronics Engineering/ Computer and Information Engineering department, and Mosul/ College of Engineering/ Computer Engineering department for their support, which has assisted to boost the outcomes of this research paper.

Біографії авторів

Mamoon A Al Jbaar, Ninevah University

Master of Science in Computer Engineering, Assistant Lecturer

Department of Computer and Information Engineering

College of Electronics Engineering

Shefa A. Dawwd, University of Mosul

Professor of Computer Engineering PhD

Department of Computer Engineering

Посилання

  1. Alwakid, G., Gouda, W., Humayun, M. (2023). Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement. Healthcare, 11 (6), 863. doi: https://doi.org/10.3390/healthcare11060863
  2. Marouf, A. A., Mottalib, M. M., Alhajj, R., Rokne, J., Jafarullah, O. (2022). An Efficient Approach to Predict Eye Diseases from Symptoms Using Machine Learning and Ranker-Based Feature Selection Methods. Bioengineering, 10 (1), 25. doi: https://doi.org/10.3390/bioengineering10010025
  3. Albahli, S., Ahmad Hassan Yar, G. N. (2022). Automated detection of diabetic retinopathy using custom convolutional neural network. Journal of X-Ray Science and Technology, 30 (2), 275–291. doi: https://doi.org/10.3233/xst-211073
  4. Ebri, A. E., Govender, P., Naidoo, K. S. (2019). Prevalence of vision impairment and refractive error in school learners in Calabar, Nigeria. African Vision and Eye Health, 78 (1). doi: https://doi.org/10.4102/aveh.v78i1.487
  5. Pakbin, M., Katibeh, M., Pakravan, M., Yaseri, M., Soleimanizad, R. (2015). Prevalence and causes of visual impairment and blindness in central Iran; The Yazd eye study. Journal of Ophthalmic and Vision Research, 10 (3), 279. doi: https://doi.org/10.4103/2008-322x.170362
  6. Elzean, C., Sakr, E. (2021). Proposed three-dimensional designs for the color wheel to help blind persons understand matching colors of their clothes. International Design Journal, 11 (2), 417–423. doi: https://doi.org/10.21608/idj.2021.153624
  7. Demir, F., Taşcı, B. (2021). An Effective and Robust Approach Based on R-CNN+LSTM Model and NCAR Feature Selection for Ophthalmological Disease Detection from Fundus Images. Journal of Personalized Medicine, 11 (12), 1276. doi: https://doi.org/10.3390/jpm11121276
  8. Biswas, R. K., Rahman, N., Islam, H., Senserrick, T., Bhowmik, J. (2020). Exposure of mobile phones and mass media in maternal health services use in developing nations: evidence from Urban Health Survey 2013 of Bangladesh. Contemporary South Asia, 29 (3), 460–473. doi: https://doi.org/10.1080/09584935.2020.1770698
  9. Alam, K. N., Khan, M. S., Dhruba, A. R., Khan, M. M., Al-Amri, J. F., Masud, M., Rawashdeh, M. (2021). Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data. Computational and Mathematical Methods in Medicine, 2021, 1–15. doi: https://doi.org/10.1155/2021/4321131
  10. He, J., Li, C., Ye, J., Qiao, Y., Gu, L. (2021). Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification. Biomedical Signal Processing and Control, 67, 102491. doi: https://doi.org/10.1016/j.bspc.2021.102491
  11. Kadhim, Y. A., Khan, M. U., Mishra, A. (2022). Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets. Sensors, 22 (22), 8999. doi: https://doi.org/10.3390/s22228999
  12. Roy, A. G., Conjeti, S., Karri, S. P. K., Sheet, D., Katouzian, A., Wachinger, C., Navab, N. (2017). ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomedical Optics Express, 8 (8), 3627. doi: https://doi.org/10.1364/boe.8.003627
  13. Lee, C. S., Tyring, A. J., Deruyter, N. P., Wu, Y., Rokem, A., Lee, A. Y. (2017). Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomedical Optics Express, 8 (7), 3440. doi: https://doi.org/10.1364/boe.8.003440
  14. Oda, M., Yamaguchi, T., Fukuoka, H., Ueno, Y., Mori, K. (2020). Automated eye disease classification method from anterior eye image using anatomical structure focused image classification technique. Medical Imaging 2020: Computer-Aided Diagnosis. doi: https://doi.org/10.1117/12.2549951
  15. Maaliw, R. R., Alon, A. S., Lagman, A. C., Garcia, M. B., Abante, M. V., Belleza, R. C. et al. (2022). Cataract Detection and Grading Using Ensemble Neural Networks and Transfer Learning. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi: https://doi.org/10.1109/iemcon56893.2022.9946550
  16. Marrapu, H. K. (2022). Detection of Glaucoma Using Deep Learning Techniques: Literature Survey. Specialusis Ugdymas, 1 (43), 8089–8098. Available at: http://www.sumc.lt/index.php/se/article/view/1182/915
  17. Kashyap, R., Nair, R., Gangadharan, S. M. P., Botto-Tobar, M., Farooq, S., Rizwan, A. (2022). Glaucoma Detection and Classification Using Improved U-Net Deep Learning Model. Healthcare, 10 (12), 2497. doi: https://doi.org/10.3390/healthcare10122497
  18. Bhimavarapu, U., Battineni, G. (2022). Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function. Healthcare, 11 (1), 97. doi: https://doi.org/10.3390/healthcare11010097
  19. Fan, R., Bowd, C., Christopher, M., Brye, N., Proudfoot, J. A., Rezapour, J. et al. (2022). Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning. JAMA Ophthalmology, 140 (4), 383. doi: https://doi.org/10.1001/jamaophthalmol.2022.0244
  20. Lin, M., Hou, B., Liu, L., Gordon, M., Kass, M., Wang, F. et al. (2022). Automated diagnosing primary open-angle glaucoma from fundus image by simulating human’s grading with deep learning. Scientific Reports, 12 (1). doi: https://doi.org/10.1038/s41598-022-17753-4
  21. Santos-Bustos, D. F., Nguyen, B. M., Espitia, H. E. (2022). Towards automated eye cancer classification via VGG and ResNet networks using transfer learning. Engineering Science and Technology, an International Journal, 35, 101214. doi: https://doi.org/10.1016/j.jestch.2022.101214
  22. Abdelmotaal, H., Hazarbasanov, R., Taneri, S., Al-Timemy, A., Lavric, A., Takahashi, H., Yousefi, S. (2023). Detecting dry eye from ocular surface videos based on deep learning. The Ocular Surface, 28, 90–98. doi: https://doi.org/10.1016/j.jtos.2023.01.005
  23. Choudhary, A., Ahlawat, S., Urooj, S., Pathak, N., Lay-Ekuakille, A., Sharma, N. (2023). A Deep Learning-Based Framework for Retinal Disease Classification. Healthcare, 11 (2), 212. doi: https://doi.org/10.3390/healthcare11020212
  24. Park, S.-J., Ko, T., Park, C.-K., Kim, Y.-C., Choi, I.-Y. (2022). Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics, 12 (3), 742. doi: https://doi.org/10.3390/diagnostics12030742
  25. Seif, G. (2018). Handling imbalanced datasets in deep learning. Available at: https://towardsdatascience.com/handling-imbalanced-datasets-in-deep-learning-f48407a0e758
  26. Hodge, W. G., Whitcher, J. P., Satariano, W. (1995). Risk Factors for Age-related Cataracts. Epidemiologic Reviews, 17 (2), 336–346. doi: https://doi.org/10.1093/oxfordjournals.epirev.a036197
  27. Liu, Y.-C., Wilkins, M., Kim, T., Malyugin, B., Mehta, J. S. (2017). Cataracts. The Lancet, 390 (10094), 600–612. doi: https://doi.org/10.1016/s0140-6736(17)30544-5
  28. Al-Jarrah, M. A., Shatnawi, H. (2017). Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. Journal of Medical Engineering & Technology, 41 (6), 498–505. doi: https://doi.org/10.1080/03091902.2017.1358772
  29. Verkicharla, P. K., Ohno-Matsui, K., Saw, S. M. (2015). Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic and Physiological Optics, 35 (5), 465–475. doi: https://doi.org/10.1111/opo.12238
  30. Garcia-Villanueva, C., Milla, E., Bolarin, J. M., García-Medina, J. J., Cruz-Espinosa, J., Benítez-del-Castillo, J. et al. (2022). Impact of Systemic Comorbidities on Ocular Hypertension and Open-Angle Glaucoma, in a Population from Spain and Portugal. Journal of Clinical Medicine, 11 (19), 5649. doi: https://doi.org/10.3390/jcm11195649
  31. Rakhmetulayeva, S., Syrymbet, Z. (2022). Implementation of convolutional neural network for predicting glaucoma from fundus images. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 70–77. doi: https://doi.org/10.15587/1729-4061.2022.269229
  32. Esengönül, M., Cunha, A. (2023). Glaucoma Detection using Convolutional Neural Networks for Mobile Use. Procedia Computer Science, 219, 1153–1160. doi: https://doi.org/10.1016/j.procs.2023.01.396
  33. He, T., Zhou, Q., Zou, Y. (2022). Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm. Diagnostics, 12 (2), 532. doi: https://doi.org/10.3390/diagnostics12020532
  34. Fang, H., Li, F., Fu, H., Sun, X., Cao, X., Lin, F. et al. (2022). ADAM Challenge: Detecting Age-Related Macular Degeneration From Fundus Images. IEEE Transactions on Medical Imaging, 41 (10), 2828–2847. doi: https://doi.org/10.1109/tmi.2022.3172773
  35. Salih, T. A., Basman Gh., M. (2020). A novel Face Recognition System based on Jetson Nano developer kit. IOP Conference Series: Materials Science and Engineering, 928 (3), 032051. doi: https://doi.org/10.1088/1757-899x/928/3/032051
  36. Wang, J., Yang, L., Huo, Z., He, W., Luo, J. (2020). Multi-Label Classification of Fundus Images With EfficientNet. IEEE Access, 8, 212499–212508. doi: https://doi.org/10.1109/access.2020.3040275
  37. Li, C., Ye, J., He, J., Wang, S., Qiao, Y., Gu, L. (2020). Dense Correlation Network for Automated Multi-Label Ocular Disease Detection with Paired Color Fundus Photographs. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). doi: https://doi.org/10.1109/isbi45749.2020.9098340
  38. Dipu, N. M., Alam Shohan, S., Salam, K. M. A. (2021). Ocular Disease Detection Using Advanced Neural Network Based Classification Algorithms. ASIAN JOURNAL OF CONVERGENCE IN TECHNOLOGY, 7 (2), 91–99. doi: https://doi.org/10.33130/ajct.2021v07i02.019
  39. Gour, N., Khanna, P. (2021). Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomedical Signal Processing and Control, 66, 102329. doi: https://doi.org/10.1016/j.bspc.2020.102329
  40. Kumar, E. S., Bindu, C. S. (2021). MDCF: Multi-Disease Classification Framework On Fundus Image Using Ensemble Cnn Models. Journal of Jilin University, 40 (09), 35–45. doi: https://doi.org/10.17605/OSF.IO/ZHA9C
  41. He, J., Li, C., Ye, J., Qiao, Y., Gu, L. (2021). Multi-label ocular disease classification with a dense correlation deep neural network. Biomedical Signal Processing and Control, 63, 102167. doi: https://doi.org/10.1016/j.bspc.2020.102167
  42. Boyina, L., Boddu, K., Tankasala, Y., Vani, K. S. (2022). Classification of Uncertain ImageNet Retinal Diseases using ResNet Model. International Journal of Intelligent Systems and Applications in Engineering, 10 (2s), 35–42. Available at: https://ijisae.org/index.php/IJISAE/article/view/2358
  43. Bhati, A., Gour, N., Khanna, P., Ojha, A. (2023). Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset. Computers in Biology and Medicine, 153, 106519. doi: https://doi.org/10.1016/j.compbiomed.2022.106519
  44. Emir, B., Colak, E. (2023). Performance analysis of pretrained convolutional neural network models for ophthalmological disease classification (Version 1). SciELO journals. doi: https://doi.org/10.6084/m9.figshare.22548323.v1
  45. Mayya, V., S, S. K., Kulkarni, U., Surya, D. K., Acharya, U. R. (2022). An empirical study of preprocessing techniques with convolutional neural networks for accurate detection of chronic ocular diseases using fundus images. Applied Intelligence, 53 (2), 1548–1566. doi: https://doi.org/10.1007/s10489-022-03490-8
Вбудовані моделі на основі DCNN для паралельної діагностики захворювань очей

##submission.downloads##

Опубліковано

2023-08-31

Як цитувати

Al Jbaar, M. A., & Dawwd, S. A. (2023). Вбудовані моделі на основі DCNN для паралельної діагностики захворювань очей. Eastern-European Journal of Enterprise Technologies, 4(2 (124), 53–69. https://doi.org/10.15587/1729-4061.2023.281790