Новий підхід до розробки архітектури нейронної мережі на основі метаевристичного підходу протиста

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.281986

Ключові слова:

нейронна мережа, штучний інтелект, оптимізація прихованого шару, глибока нейронна мережа

Анотація

Предметом дослідження є визначення найкращої моделі архітектури нейронної мережі та способів оптимізації архітектури за допомогою метаевристичного підходу протиста. Існує необхідність у всебічному дослідженні і використанні метаевристичних методів. Ці методи спрямовані на вирішення завдань та адаптацію до способу життя протиста амеби. У дослідженні запропонований метод модифікує життєвий цикл амеби, що складається з чотирьох фаз: профази, метафази, анафази та телофази. Ці чотири фази модифіковані в архітектурі нейронної мережі для оптимізації відповідної кількості прихованих шарів та створення ефективної моделі архітектури. Результати показують, що підхід протиста оптимізує архітектуру нейронної мережі, особливо при створенні прихованих шарів для вдосконалення моделі нейронної мережі. Відмінною особливістю отриманих результатів є те, що середній діапазон вироджених нейронів у прихованому шарі становить від 0 до 35 нейронів у кожному шарі. Стандартна кількість нейронів дозволяє вирішити задачу визначення найкращої моделі архітектури нейронної мережі. Алгоритм протиста, вбудований у рекурентну нейронну мережу протиста для вимірювання категоріальних даних, дає середнє значення RMSE, що представляє різницю між фактичними вимірами та прогнозами 0,066.

Отже, розроблена модель перевершує за продуктивністю існуючу класичну модель нейронної мережі. Що стосується точності, алгоритм протиста, вбудований у нейронну мережу для категоріальних даних та даних часових рядів, забезпечує середню точність 0,952 та повноту 0,950. Згорткова нейронна мережа протиста забезпечує точність 95,9 %. Таким чином, із трьох протестованих наборів даних згорткова нейронна мережа протиста демонструє найвище значення точності

Біографії авторів

T. Henny Febriana Harumy, Universitas Sumatera Utara

PhD Student

Department of Computer Science

Muhammad Zarlis, Binus University

Professor of Computer Science

Department of Information System Management

Maya Silvi Lydia, Universitas Sumatera Utara

PhD, Dean of Computer Science and Information Technology

Department of Computer Science

Syahril Efendi, Universitas Sumatera Utara

PhD, Associate Professor

Department оf Computer Science

Посилання

  1. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J. A. (2007). The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 179 (3), 927–939. doi: https://doi.org/10.1016/j.ejor.2005.05.034
  2. Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Chen, X., Wang, X. (2021). A Comprehensive Survey of Neural Architecture Search. ACM Computing Surveys, 54 (4), 1–34. doi: https://doi.org/10.1145/3447582
  3. Alkabbani, H., Ahmadian, A., Zhu, Q., Elkamel, A. (2021). Machine Learning and Metaheuristic Methods for Renewable Power Forecasting: A Recent Review. Frontiers in Chemical Engineering, 3. doi: https://doi.org/10.3389/fceng.2021.665415
  4. Joshi, D., Chithaluru, P., Anand, D., Hajjej, F., Aggarwal, K., Torres, V. Y., Thompson, E. B. (2023). An Evolutionary Technique for Building Neural Network Models for Predicting Metal Prices. Mathematics, 11 (7), 1675. doi: https://doi.org/10.3390/math11071675
  5. Panario, D. (2014). Open Problems for Polynomials over Finite Fields and Applications. Open Problems in Mathematics and Computational Science, 111–126. doi: https://doi.org/10.1007/978-3-319-10683-0_6
  6. Panchal, G., Ganatra, A., Kosta, Y. P., Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering, 3 (2), 332–337. doi: https://doi.org/10.7763/ijcte.2011.v3.328
  7. Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F. et al. (2020). A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Systems, 194, 105596. doi: https://doi.org/10.1016/j.knosys.2020.105596
  8. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M. (2012). Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110-111, 151–166. doi: https://doi.org/10.1016/j.compstruc.2012.07.010
  9. Alagoz, B. B., Simsek, O. I., Ari, D., Tepljakov, A., Petlenkov, E., Alimohammadi, H. (2022). An Evolutionary Field Theorem: Evolutionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose Applications. Sensors, 22 (10), 3836. doi: https://doi.org/10.3390/s22103836
  10. Ebenezer M., A., Arya, A. (2022). An Atypical Metaheuristic Approach to Recognize an Optimal Architecture of a Neural Network. Proceedings of the 14th International Conference on Agents and Artificial Intelligence. doi: https://doi.org/10.5220/0010951600003116
  11. Castellanos, J. L., Gomez, M. F., Adams, K. D. (2017). Using machine learning based on eye gaze to predict targets: An exploratory study. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). doi: https://doi.org/10.1109/ssci.2017.8285207
  12. Adhitya, E. K., Satria, R., Subagyo, H. (2015). Komparasi Metode Machine Learning dan Metode Non Machine Learning untuk Estimasi Usaha Perangkat Lunak. Journal of Software Engineering, 1 (2), 109–113. Available at: https://www.neliti.com/publications/90180/komparasi-metode-machine-learning-dan-metode-non-machine-learning-untuk-estimasi#cite
  13. Demin, S. Yu., Berdieva, M. A., Podlipaeva, Yu. I., Yudin, A. L., Goodkov, A. V. (2017). Karyotyping of Amoeba proteus. Cell and Tissue Biology, 11 (4), 308–313. doi: https://doi.org/10.1134/s1990519x17040046
  14. Harumy, T. H. F., Zarlis, M., Effendi, S., Lidya, M. S. (2021). Prediction Using A Neural Network Algorithm Approach (A Review). 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). doi: https://doi.org/10.1109/icsecs52883.2021.00066
  15. Harumy, T. H. F., Sitorus, J., Lubis, M. (2018). Sistem Informasi Absensi Pada Pt. Cospar Sentosa Jaya Menggunakan Bahasa Pemprograman Java. Jurnal Teknik dan Informatika, 5 (1), 63–70. Available at: https://jurnal.pancabudi.ac.id/index.php/Juti/article/view/95
  16. Ergen, T., Pilanci, M. (2021). Convex geometry and duality of over-parameterized neural networks. Journal of Machine Learning Research, 22, 1–63. Available at: https://jmlr.org/papers/volume22/20-1447/20-1447.pdf
  17. Harumy, T. H. F., Yustika Manik, F., Altaha (2021). Optimization Classification of Diseases Which is Dominant Suffered by Coastal Areas Using Neural Network. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). doi: https://doi.org/10.1109/databia53375.2021.9650223
  18. Pomey, P. (2017). The Protis project (Marseilles, France). Ships And Maritime Landscapes, 484–489. doi: https://doi.org/10.2307/j.ctt20p56b6.86
  19. Wagarachchi, N. M., Karunananda, A. S. (2013). Optimization of multi-layer artificial neural networks using delta values of hidden layers. 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB). doi: https://doi.org/10.1109/ccmb.2013.6609169
  20. Musikawan, P., Sunat, K., Kongsorot, Y., Horata, P., Chiewchanwattana, S. (2019). Parallelized Metaheuristic-Ensemble of Heterogeneous Feedforward Neural Networks for Regression Problems. IEEE Access, 7, 26909–26932. doi: https://doi.org/10.1109/access.2019.2900563
  21. Guliyev, N. J., Ismailov, V. E. (2018). On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural Networks, 98, 296–304. doi: https://doi.org/10.1016/j.neunet.2017.12.007
  22. Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta, A., Benhaddou, D. (2017). Parameters optimization of deep learning models using Particle swarm optimization. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). doi: https://doi.org/10.1109/iwcmc.2017.7986470
  23. Henríquez, P. A., Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights. Applied Soft Computing, 70, 1109–1121. doi: https://doi.org/10.1016/j.asoc.2018.03.013
  24. Balamurugan, P., Amudha, T., Satheeshkumar, J., Somam, M. (2021). Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites. Journal of Physics: Conference Series, 1998 (1), 012015. doi: https://doi.org/10.1088/1742-6596/1998/1/012015
  25. Mohammed, A. J., Al-Majidi, S. D., Al-Nussairi, M. Kh., Abbod, M. F., Al-Raweshidy, H. S. (2022). Design of a Load Frequency Controller based on Artificial Neural Network for Single-Area Power System. 2022 57th International Universities Power Engineering Conference (UPEC). doi: https://doi.org/10.1109/upec55022.2022.9917853
  26. Romanuke, V. (2015). Optimal Training Parameters and Hidden Layer Neuron Number of Two-Layer Perceptron for Generalised Scaled Object Classification Problem. Information Technology and Management Science, 18 (1). doi: https://doi.org/10.1515/itms-2015-0007
  27. Hegde, S., Mundada, M. R. (2019). Enhanced Deep Feed Forward Neural Network Model for the Customer Attrition Analysis in Banking Sector. International Journal of Intelligent Systems and Applications, 11 (7), 10–19. doi: https://doi.org/10.5815/ijisa.2019.07.02
  28. Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., Morgan, R. E. (2017). Two Hidden Layers are Usually Better than One. Communications in Computer and Information Science, 279–290. doi: https://doi.org/10.1007/978-3-319-65172-9_24
  29. Cardoso, W., Di Felice, R., Dos Santos, B. N., Schitine, A. N., Pires Machado, T. A., Sousa Galdino, A. G. de, Morbach Dixini, P. V. (2022). Modeling of artificial neural networks for silicon prediction in the cast iron production process. IAES International Journal of Artificial Intelligence (IJ-AI), 11 (2), 530. doi: https://doi.org/10.11591/ijai.v11.i2.pp530-538
  30. Zhou, Y., Niu, Y., Luo, Q., Jiang, M. (2020). Teaching learning-based whale optimization algorithm for multi-layer perceptron neural network training. Mathematical Biosciences and Engineering, 17 (5), 5987–6025. doi: https://doi.org/10.3934/mbe.2020319
  31. Sadollah, A., Eskandar, H., Lee, H. M., Yoo, D. G., Kim, J. H. (2016). Water cycle algorithm: A detailed standard code. SoftwareX, 5, 37–43. doi: https://doi.org/10.1016/j.softx.2016.03.001
  32. Zheng, Y.-J., Lu, X.-Q., Du, Y.-C., Xue, Y., Sheng, W.-G. (2019). Water wave optimization for combinatorial optimization: Design strategies and applications. Applied Soft Computing, 83, 105611. doi: https://doi.org/10.1016/j.asoc.2019.105611
  33. Wang, N., Er, M. J., Han,M. (2015). Generalized Single-Hidden Layer Feedforward Networks for Regression Problems. IEEE Transactions on Neural Networks and Learning Systems, 26 (6), 1161–1176. doi: https://doi.org/10.1109/tnnls.2014.2334366
  34. Geurts, A. M., Hackett, C. S., Bell, J. B., Bergemann, T. L., Collier, L. S., Carlson, C. M. et al. (2006). Structure-based prediction of insertion-site preferences of transposons into chromosomes. Nucleic Acids Research, 34 (9), 2803–2811. doi: https://doi.org/10.1093/nar/gkl301
  35. Yang, X.-S. (2011). Metaheuristic Optimization: Algorithm Analysis and Open Problems. Lecture Notes in Computer Science, 21–32. doi: https://doi.org/10.1007/978-3-642-20662-7_2
  36. Yang, X.-S., He, X. (2014). Swarm Intelligence and Evolutionary Computation: Overview and Analysis. Recent Advances in Swarm Intelligence and Evolutionary Computation, 1–23. doi: https://doi.org/10.1007/978-3-319-13826-8_1
  37. Agrawal, P., Abutarboush, H. F., Ganesh, T., Mohamed, A. W. (2021). Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019). IEEE Access, 9, 26766–26791. doi: https://doi.org/10.1109/access.2021.3056407
  38. Ge, D. H., Li, H. S., Zhang, L., Liu, R. Y., Shen, P. Y., Miao, Q. G. (2020). Survey of Lightweight Neural Network. Journal of Software. doi: https://doi.org/10.13328/j.cnki.jos.005942
  39. Hofmann, W., Sedlmeir-Hofmann, C., Ivandic´, M., Ruth, D., Luppa, P. (2010). PROTIS: Use of Combined Biomarkers for Providing Diagnostic Information on Disease States. The Urinary Proteome, 123–142. doi: https://doi.org/10.1007/978-1-60761-711-2_8
Новий підхід до розробки архітектури нейронної мережі на основі метаевристичного підходу протиста

##submission.downloads##

Опубліковано

2023-08-31

Як цитувати

Harumy, T. H. F., Zarlis, M., Lydia, M. S., & Efendi, S. (2023). Новий підхід до розробки архітектури нейронної мережі на основі метаевристичного підходу протиста. Eastern-European Journal of Enterprise Technologies, 4(4 (124), 46–59. https://doi.org/10.15587/1729-4061.2023.281986

Номер

Розділ

Математика та кібернетика - прикладні аспекти