Визначення деяких закономірностей теплообміну у зварному з’єднанні труби SUS304 чисельним підходом

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.290124

Ключові слова:

теплопередача, SUS304, тепловий потік: зварне з’єднання, зварювання тертям з перемішуванням

Анотація

У цьому дослідженні чисельним методом проведено дослідження впливу теплопередачі в зварному з’єднанні труби SUS304. Дослідження було проведено з використанням статичних структурних інструментів ANSYS у поєднанні з аналізом теплових перехідних процесів програмного пакету. На основі теплового потоку в точці зварювання, де температура досягає 507 °C в межах 200 мм від кінця звареної труби, було проведено перевірку ефективності теплопередачі. Цей аналіз ґрунтувався на тепловому потоці в точці зварювання. Оскільки загальний тепловий потік наближається до 7,02e6 Вт∙м–2, на цю тему були проведені дослідження. Було зроблено три типи спрямованих вимірювань теплового потоку (X, Y і Z), причому численні висновки вказують на те, що напрямок X дає найбільш мінливі показання теплового потоку. Ці перевірки проводилися в різних умовах. Ці шляхи були обрані як правильні, оскільки вони вели безпосередньо до джерела тепла. в той час як вісь Z забезпечує мінімальну кількість теплового потоку по всій платі. Пошкоджена ділянка, виявлена на деревах, які все ще стояли, була врахована в розрахунку. Для розрахунку величини залишкової напруги протягом усієї процедури неодноразово застосовували напругу фон Мізеса. Ця тактика зрештою була застосована. Через напругу, викликану збільшеним радіусом вигину труби, найбільш вразливим є шматок труби, розташований на відстані 200 мм від дистального кінця труби. Розраховане значення становило 2,49e6 Па при підвищенні температури до 500 °C.

Біографії авторів

Abbas Naseer Hasein, Middle Technical University

Lecturer

Department of Mechanical Technical /Production

Al- Kut Technical Institute

Ashham Mohammed Aned, Middle Technical University

Lecturer

Department of Mechanical Technical /Production

Al- Kut Technical Institute

Mortadha Kareem A. Razzaq, Middle Technical University

Lecturer

Department of Mechanical Technical /Production

Al- Kut Technical Institute

Посилання

  1. Savin, V. V., Lebedeva, K. N., Herelovich, V. V., Savina, L. A., Chaika, V. A. (2020). Prospects for the use of u-shaped welded pipes of steel a316l heat transfer assortment in chemical engineering. IOP Conference Series: Materials Science and Engineering, 939 (1), 012069. doi: https://doi.org/10.1088/1757-899x/939/1/012069
  2. Yang, Z., Fang, Y., He, J. (2020). Numerical simulation of heat transfer and fluid flow during vacuum electron beam welding of 2219 aluminium girth joints. Vacuum, 175, 109256. doi: https://doi.org/10.1016/j.vacuum.2020.109256
  3. Ji, Y., Yuan, D., Hao, Y., Tian, Z., Lou, J., Wu, Y. (2022). Experimental study on heat transfer performance of high temperature heat pipe with large length-diameter ratio for heat utilization of concentrated solar energy. Applied Thermal Engineering, 215, 118918. doi: https://doi.org/10.1016/j.applthermaleng.2022.118918
  4. Peng, X., Xu, G., Zhou, A., Yang, Y., Ma, Z. (2020). An adaptive Bernstein-Bézier finite element method for heat transfer analysis in welding. Advances in Engineering Software, 148, 102855. doi: https://doi.org/10.1016/j.advengsoft.2020.102855
  5. Ham, J., Shin, Y., Cho, H. (2019). Theoretical investigation of the influence of pipe diameter and exit channel width in welded plate heat exchanger on heat exchanger performance. Heat and Mass Transfer, 56 (3), 759–771. doi: https://doi.org/10.1007/s00231-019-02733-8
  6. Sharaf, H. K., Salman, S., Abdulateef, M. H., Magizov, R. R., Troitskii, V. I., Mahmoud, Z. H. et al. (2021). Role of initial stored energy on hydrogen microalloying of ZrCoAl(Nb) bulk metallic glasses. Applied Physics A, 127 (1). doi: https://doi.org/10.1007/s00339-020-04191-0
  7. Yao, Y., Ding, J., Zhang, Y., Wang, W., Lu, J. (2023). Thermal and hydraulic optimization of supercritical CO2 pillow plate heat exchanger with ellipse weld spots in CSP system. International Communications in Heat and Mass Transfer, 143, 106739. doi: https://doi.org/10.1016/j.icheatmasstransfer.2023.106739
  8. Der, O., Alqahtani, A. A., Marengo, M., Bertola, V. (2021). Characterization of polypropylene pulsating heat stripes: Effects of orientation, heat transfer fluid, and loop geometry. Applied Thermal Engineering, 184, 116304. doi: https://doi.org/10.1016/j.applthermaleng.2020.116304
  9. Markushin, M. E., Galanskiy, S. A., Maksimov, I. S., Zolkin, A. L. (2023). Passive control of a temperature of continuous welded rail using loop heat pipes. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0162725
  10. Sharaf, H. K., Salman, S., Dindarloo, M. H., Kondrashchenko, V. I., Davidyants, A. A., Kuznetsov, S. V. (2021). The effects of the viscosity and density on the natural frequency of the cylindrical nanoshells conveying viscous fluid. The European Physical Journal Plus, 136 (1). doi: https://doi.org/10.1140/epjp/s13360-020-01026-y
  11. Liu, Y., Wang, P., Fang, H., Ma, N. (2021). Mitigation of residual stress and deformation induced by TIG welding in thin-walled pipes through external constraint. Journal of Materials Research and Technology, 15, 4636–4651. doi: https://doi.org/10.1016/j.jmrt.2021.10.035
  12. Zhao, J., Ji, Y., Yuan, D.-Z., Guo, Y.-X., Zhou, S.-W. (2022). Structural effect of internal composite wick on the anti-gravity heat transfer performance of a concentric annular high-temperature heat pipe. International Communications in Heat and Mass Transfer, 139, 106404. doi: https://doi.org/10.1016/j.icheatmasstransfer.2022.106404
  13. Sharaf, H. K., Ishak, M. R., Sapuan, S. M., Yidris, N. (2020). Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ–morphological chart–ANP methods. Journal of Materials Research and Technology, 9 (4), 9182–9188. doi: https://doi.org/10.1016/j.jmrt.2020.05.129
  14. Abdullah, Y. M., Aziz, G. S., Sharaf, H. K. (2023). Simulate the Rheological Behaviour of the Solar Collector by Using Computational Fluid Dynamic Approach. CFD Letters, 15 (9), 175–182. doi: https://doi.org/10.37934/cfdl.15.9.175182
  15. Yu, J., Xin, Z., Zhang, R., Chen, Z., Li, Y., Zhou, W. (2022). Effect of spiral woven mesh liquid pumping action on the heat transfer performance of ultrathin vapour chamber. International Journal of Thermal Sciences, 182, 107799. doi: https://doi.org/10.1016/j.ijthermalsci.2022.107799
  16. Sharaf, H. K., Alyousif, S., Khalaf, N. J., Hussein, A. F., Abbas, M. K. (2022). Development of bracket for cross arm structure in transmission tower: Experimental and numerical analysis. New Materials, Compounds and Applications, 6 (3), 257–275.‏ Available at: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V6N3/SharafHS.pdf
  17. Liu, Y., Yu, Y., Wang, P., Fang, H., Ma, N. (2022). Analysis and mitigation of the bending deformation in girth-welded slender pipes with numerical modelling and experimental measurement. Journal of Manufacturing Processes, 78, 278–287. doi: https://doi.org/10.1016/j.jmapro.2022.04.023
  18. Sharaf, H. K., Ishak, M. R., Sapuan, S. M., Yidris, N., Fattahi, A. (2020). Experimental and numerical investigation of the mechanical behavior of full-scale wooden cross arm in the transmission towers in terms of load-deflection test. Journal of Materials Research and Technology, 9 (4), 7937–7946. doi: https://doi.org/10.1016/j.jmrt.2020.04.069
  19. Liu, Y., Wang, P., Fang, H., Ma, N. (2021). Characteristics of welding distortion and residual stresses in thin-walled pipes by solid-shell hybrid modelling and experimental verification. Journal of Manufacturing Processes, 69, 532–544. doi: https://doi.org/10.1016/j.jmapro.2021.08.014
  20. Almagsoosi, L., Abadi, M. T. E., Hasan, H. F., Sharaf, H. K. (2022). Effect of the Volatility of the Crypto Currency and Its Effect on the Market Returns. Industrial Engineering & Management Systems, 21 (2), 238–243. doi: https://doi.org/10.7232/iems.2022.21.2.238
  21. Al-Fahad, I. O. B., Sharaf, H. kadhim, Bachache, L. N., Bachache, N. K. (2023). Identifying the mechanism of the fatigue behavior of the composite shaft subjected to variable load. Eastern-European Journal of Enterprise Technologies, 3 (7 (123)), 37–44. doi: https://doi.org/10.15587/1729-4061.2023.283078
  22. Chen, G., Tang, Y., Wan, Z., Zhong, G., Tang, H., Zeng, J. (2019). Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. International Communications in Heat and Mass Transfer, 100, 12–19. doi: https://doi.org/10.1016/j.icheatmasstransfer.2018.10.011
  23. Gharib, A. R., Biglari, F. R., Shafaie, M., Kokabi, A. H. (2019). Experimental and numerical investigation of fixture time on distortion of welded part. The International Journal of Advanced Manufacturing Technology, 104 (1-4), 1121–1131. doi: https://doi.org/10.1007/s00170-019-03874-0
  24. Kong, Y. S., Cheepu, M., Park, Y. W. (2020). Effect of Heating Time on Thermomechanical Behavior of Friction-Welded A105 Bar to A312 Pipe Joints. Transactions of the Indian Institute of Metals, 73 (6), 1433–1438. doi: https://doi.org/10.1007/s12666-020-01900-4
  25. Mikulionok, I. O. (2019). Classification of Means of Enhancement of Heat Transfer from the Outer Surface of Pipes (Survey of Patents). Chemical and Petroleum Engineering, 55 (5-6), 491–499. doi: https://doi.org/10.1007/s10556-019-00651-4
  26. Liu, R.-F., Wang, J.-C. (2022). Application of finite element method to effect of weld overlay residual stress on probability of piping failure. International Journal of Pressure Vessels and Piping, 200, 104812. doi: https://doi.org/10.1016/j.ijpvp.2022.104812
  27. Raheemah, S. H., Fadheel, K. I., Hassan, Q. H., Aned, A. M., Turki Al-Taie, A. A., Sharaf, H. K. (2021). Numerical Analysis of the Crack Inspections Using Hybrid Approach for the Application the Circular Cantilever Rods. Pertanika Journal of Science and Technology, 29 (2). doi: https://doi.org/10.47836/pjst.29.2.22
  28. Raheemah, S. H., Ashham, M. A., Salman, K. (2019). Numerical investigation on enhancement of heat transfer using rod inserts in single pipe heat exchanger. Journal of Mechanical Engineering and Sciences, 13 (4), 6112–6124. doi: https://doi.org/10.15282/jmes.13.4.2019.24.0480
  29. Asadi, P., Alimohammadi, S., Kohantorabi, O., Soleymani, A., Fazli, A. (2020). Numerical investigation on the effect of welding speed and heat input on the residual stress of multi-pass TIG welded stainless steel pipe. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235 (6-7), 1007–1021. doi: https://doi.org/10.1177/0954405420981335
  30. Salman, S., Sharaf, H. K., Hussein, A. F., Khalaf, N. J., Abbas, M. K., Aned, A. M. et al. (2022). Optimization of raw material properties of natural starch by food glue based on dry heat method. Food Science and Technology, 42. doi: https://doi.org/10.1590/fst.78121
  31. Salman, K. h., Elsheikh, A. H., Ashham, M., Ali, M. K. A., Rashad, M., Haiou, Z. (2019). Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (8). doi: https://doi.org/10.1007/s40430-019-1846-0
  32. Arora, H., Mahaboob Basha, K., Naga Abhishek, D., Devesh, B. (2022). Welding simulation of circumferential weld joint using TIG welding process. Materials Today: Proceedings, 50, 923–929. doi: https://doi.org/10.1016/j.matpr.2021.06.315
  33. Lavrentieva, O. O., Arkhypov, I. O., Kuchma, O. I., Uchitel, A. D. (2020). Use of simulators together with virtual and augmented reality in the system of welders’ vocational training: past, present, and future. doi: https://doi.org/10.31812/123456789/3748
  34. Alyaseri, N. H. A., Salman, M. D., Maseer, R. W., Hussein, E. K., Subhi, K. A., Alwan, S. A. et al. (2023). Exploring the Modeling of Socio-Technical Systems in the Fields of Sport, Engineering and Economics. Revista iberoamericana de psicología del ejercicio y el deporte, 18 (3), 338–341.‏ Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=9087565
  35. Jawad, K. K., Alyaseri, N. H. A., Alwan, S. A., Hussein, E. K., Subhi, K. A., Sharaf, H. K. et al. (2023). Contingency in Engineering Problem Solving Understanding its Role and Implications: Focusing on the sports Machine. Revista iberoamericana de psicología del ejercicio y el deporte, 18 (3), 334–337.‏ Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=9087564
  36. Salman, M. D., Alwan, S. A., Alyaseri, N. H. A., Subhi, K. A., Hussein, E. K., Sharaf, H. K. et al. (2023). The Impact of Engineering Anxiety on Students: A Comprehensive Study In the fields of Sport, economics, and teaching methods. Revista iberoamericana de psicología del ejercicio y el deporte, 18 (3), 326–329.‏ Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=9087521
  37. Alwan, S. A., Jawad, K. K., Alyaseri, N. H. A., Subhi, K. A., Hussein, E. K., Aned, A. M. et al. (2023). The Psychological Effects of Perfectionism on Sport, economic and Engineering Students. Revista iberoamericana de psicología del ejercicio y el deporte, 18 (3), 330–333.‏ Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=9087522
  38. Al-Fahad, I. O. B., Hassan, A. D., Faisal, B. M., Sharaf, H. kadhim. (2023). Identification of regularities in the behavior of a glass fiber-reinforced polyester composite of the impact test based on ASTM D256 standard. Eastern-European Journal of Enterprise Technologies, 4 (7 (124)), 63–71. doi: https://doi.org/10.15587/1729-4061.2023.286541
Визначення деяких закономірностей теплообміну у зварному з’єднанні труби SUS304 чисельним підходом

##submission.downloads##

Опубліковано

2023-10-31

Як цитувати

Hasein, A. N., Aned, A. M., & Razzaq, M. K. A. (2023). Визначення деяких закономірностей теплообміну у зварному з’єднанні труби SUS304 чисельним підходом. Eastern-European Journal of Enterprise Technologies, 5(1 (125), 104–113. https://doi.org/10.15587/1729-4061.2023.290124

Номер

Розділ

Виробничо-технологічні системи