Формування керуючих впливів у режимі реального часу для прогнозування післяаварійних електричних режимів з урахуванням допустимих запасів стійкості

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2024.307676

Ключові слова:

стійкість енергосистеми, запас стійкості, системи протиаварійної автоматики, керуючі впливи

Анотація

Об’єктом дослідження є система протиаварійної автоматики для забезпечення стійкості електроенергетичних систем (ЕЕС) при аварійних дисбалансах. Актуальність проблеми забезпечення стійкості ЕЕС зумовлена необхідністю підвищення ефективності протиаварійної автоматики для зниження ризику виникнення системних аварій зі значними збитками. Для вирішення даного завдання пропонується алгоритм вибору обсягу керуючих впливів на основі принципів адаптивного управління для прогнозування післяаварійного режиму з прийнятним запасом стійкості. Алгоритм формування обсягу керуючих впливів заснований на залежності величини керуючих впливів від величини оцінки запасів стійкості за значенням визначника Якобі. Для побудови залежності використовується алгоритм пошуку граничного режиму за траєкторією зміни рівноважного положення сталого стану системи від вихідного до граничного. На відміну від існуючих алгоритмів, запропонований алгоритм дозволяє встановити функціональну залежність величини управління від поточних параметрів режиму або запасу стійкості, що дозволяє підвищити ефективність розрахунків при виборі керуючих впливів. Реалізація запропонованого алгоритму здійснюється на основі функціональної схеми за даними системи векторних вимірювань.

Особливостями запропонованого алгоритму є можливість усунення недоліків існуючих систем режимної автоматики, основними з яких є:

– необхідність проведення численних варіантних розрахунків для вибору обсягу керуючих впливів;

– можливий надлишковий обсяг керуючих впливів при невідповідності фактичного режиму розрахунковому

Біографії авторів

Karmel Tokhtibakiev, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

Candidate of Technical Sciences, Senior Lecturer

 Department of Electric Power Systems

Alexandr Gunin, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

PhD Student

Department of Electric Power Systems

Yerlan Kenessov, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

PhD Student

Department of Electric Power Systems

Daniil Vassilyev, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

Master's Student

Department of Electric Power Systems

Anur Bektimirov, Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev

PhD Student

Department of Electric Power Systems

Посилання

  1. Kundur, P. (2007). Power system stability. Power system stability and control.
  2. Kundur, P., Malik, P. (2022). Power System Stability and Control. McGraw-Hill. Available at: https://www.accessengineeringlibrary.com/content/book/9781260473544
  3. Cutsem, T., Vournas, C. (1998). Voltage Stability of Electric Power Systems. Springer US. https://doi.org/10.1007/978-0-387-75536-6
  4. Gluskin, I. Z., Iofiev, B. I. (2009). History of development of emergency control automation. J. Relayshchik, 2.
  5. Wang, H., Zhang, B., Hao, Z. (2015). Response Based Emergency Control System for Power System Transient Stability. Energies, 8 (12), 13508–13520. https://doi.org/10.3390/en81212381
  6. Tang, C., Dong, S., Ren, X., Yin, L., Ju, L. (2018). Improved Jacobi Pretreatment Method for Solving Iterative Power Flow Calculation. Automation of Electric Power Systems, 42 (12), 81–86.
  7. Gluskin, I. Z., Vasiliev, A. N., Melnikov, P. V., Bogachenko, D. D., Efremova, I. Yu. (2015). Issues of overload fixation in multi-machine scheme of power system. Eurasian Scientific Journal, 11.
  8. Machowski, J., Lubosny, Z., Bialek, J. W., Bumby, J. R. (2020). Power system dynamics: stability and control. John Wiley & Sons, 896.
  9. Pourdaryaei, A., Shahriari, A., Mohammadi, M., Aghamohammadi, M. R., Karimi, M., Kauhaniemi, K. (2023). A New Approach for Long-Term Stability Estimation Based on Voltage Profile Assessment for a Power Grid. Energies, 16 (5), 2508. https://doi.org/10.3390/en16052508
  10. Hoseinzadeh, B., Leth Bak, C. (2018). Centralized coordination of emergency control and protection system using online outage sensitivity index. Electric Power Systems Research, 163, 413–422. https://doi.org/10.1016/j.epsr.2018.07.016
  11. Efremova, I. U., Glouskin, I. Z. (2017). Development of an adaptive fault detector structural scheme of automatic stability control system. Vestnik IGEU, 6, 15–24. https://doi.org/10.17588/2072-2672.2017.6.015-024
  12. Gunin, A., Tokhtibakiev, K., Saukhimov, A., Bektimirov, A., Didorenko, E. (2023). Improving the efficiency of mode automation using synchrophasor measurements to identify stability disturbance. Eastern-European Journal of Enterprise Technologies, 2 (8 (122)), 18–26. https://doi.org/10.15587/1729-4061.2023.275515
  13. Yang, H., Zhang, W., Shi, F., Xie, J., Ju, W. (2019). PMU-based model-free method for transient instability prediction and emergency generator-shedding control. International Journal of Electrical Power & Energy Systems, 105, 381–393. https://doi.org/10.1016/j.ijepes.2018.08.031
  14. Gupta, A., Gurrala, G., Sastry, P. S. (2019). An Online Power System Stability Monitoring System Using Convolutional Neural Networks. IEEE Transactions on Power Systems, 34 (2), 864–872. https://doi.org/10.1109/tpwrs.2018.2872505
  15. Bento, M. E. C. (2021). Monitoring of the power system load margin based on a machine learning technique. Electrical Engineering, 104 (1), 249–258. https://doi.org/10.1007/s00202-021-01274-w
  16. Bento, M. E. C. (2022). A method for monitoring the load margin of power systems under load growth variations. Sustainable Energy, Grids and Networks, 30, 100677. https://doi.org/10.1016/j.segan.2022.100677
  17. Azman, S. K., Isbeih, Y. J., Moursi, M. S. E., Elbassioni, K. (2020). A Unified Online Deep Learning Prediction Model for Small Signal and Transient Stability. IEEE Transactions on Power Systems, 35 (6), 4585–4598. https://doi.org/10.1109/tpwrs.2020.2999102
  18. Altukhova, M. K., Lyulina, M. A., Ryndina, I. E., Chudny, V. S., Ivanova, E. A., Chilibev, A. G. (2023). Computational Methods for Electric Power Systems Marginal Steady-State Modes and Algorithms of Implementation. 2023 Seminar on Industrial Electronic Devices and Systems (IEDS). https://doi.org/10.1109/ieds60447.2023.10425966
  19. Altukhova, M. K., Lyulina, M. A., Ryndina, I. E., Chudny, V. S., Ivanova, E. A., Pershikov, G. A. (2024). Methodology for Identifying Sensing Elements in Electric Power System Using Marginal Mode Equations. 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon). https://doi.org/10.1109/elcon61730.2024.10468081
  20. Guk, O. M., Odintsov, M. V., Sevastyanova, A. V., Smolovik, S. V. (2012). Investigations of the possibility of using the numerical value of the determinant of the Jacobi matrix for analysing the static stability of power systems. Problems of Power Engineering, 3-4.
  21. Dusabimana, E., Yoon, S.-G. (2020). A Survey on the Micro-Phasor Measurement Unit in Distribution Networks. Electronics, 9 (2), 305. https://doi.org/10.3390/electronics9020305
  22. Boussadia, F., Belkhiat, S. (2021). A New Adaptive Underfrequency Load Shedding Scheme to Improve Frequency Stability in Electric Power System. Journal Européen Des Systèmes Automatisés, 54 (2), 263–271. https://doi.org/10.18280/jesa.540208
  23. Li, H., Ma, Z., Weng, Y. (2022). A Transfer Learning Framework for Power System Event Identification. IEEE Transactions on Power Systems, 37 (6), 4424–4435. https://doi.org/10.1109/tpwrs.2022.3153445
  24. Hong, Q., Ji, L., Blair, S. M., Tzelepis, D., Karimi, M., Terzija, V., Booth, C. D. (2022). A New Load Shedding Scheme With Consideration of Distributed Energy Resources’ Active Power Ramping Capability. IEEE Transactions on Power Systems, 37 (1), 81–93. https://doi.org/10.1109/tpwrs.2021.3090268
  25. Khrushchev, Yu. V. (2005). Methods of calculation of stability of power systems. Tomsk, 176.
  26. Pawar, P. S., Mishra, D. R., Dumka, P. (2022). Solving first order ordinary differential equations using least square method: a comparative study. International Journal of Innovative Science and Research Technology (IJISRT), 7 (3), 857–864. https://doi.org/10.5281/zenodo.6418458
  27. Kenessov, Y., Tokhtibakiev, K., Saukhimov, A., Vassilyev, D., Gunin, A., Iliyasov, A. (2024). Construction of a recurrent neural network-based electrical load forecasting model for a 110 kV substation: a case study in the Western Region of The Republic of Kazakhstan. Energy-Saving Technologies and Equipment, 2 (8 (128)), 6–15. https://doi.org/10.15587/1729-4061.2024.299192
Формування керуючих впливів у режимі реального часу для прогнозування післяаварійних електричних режимів з урахуванням допустимих запасів стійкості

##submission.downloads##

Опубліковано

2024-08-28

Як цитувати

Tokhtibakiev, K., Gunin, A., Kenessov, Y., Vassilyev, D., & Bektimirov, A. (2024). Формування керуючих впливів у режимі реального часу для прогнозування післяаварійних електричних режимів з урахуванням допустимих запасів стійкості. Eastern-European Journal of Enterprise Technologies, 4(8 (130), 6–18. https://doi.org/10.15587/1729-4061.2024.307676

Номер

Розділ

Енергозберігаючі технології та обладнання