Semantic annotation of text documents based on hierarchical radial basis neural network
DOI:
https://doi.org/10.15587/1729-4061.2010.3262Keywords:
semantic annotation, radial basis function neural network, multi-layered architectureAbstract
The hierarchical radial basis function neural network with a multi-layered architecture is proposed. This neural network is used for extracting knowledge from textual sources with the maximum number of relevant attributes for each object and assigns it to the selected class of ontology.References
- Uren V. Semantic annotation for knowledge management: Requirements and a survey of the state of the art / V. Uren, Ph. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, F. Ciravegna // Web Semantics: Science, Services and Agents on the World Wide Web. – 2006. – V. 4 – N. 1. – P. 14–28.
- Chen H. Knowledge Management Systems: A Text Mining Perspective / H. Chen // Arisona: Knowledge Computing Corporation. – 2004. – 50 p.
- Хорошевский В.Ф. Пространства знаний в сети Интернет и Semantic Web / В.Ф. Хорошевский // Искусственный интеллект и принятие решений. – 2008. – 1. – C. 80–97.
- Al-Khalifa H. The evolution of metadata from standards to semantics in E-learning applications / H. Al-Khalifa, H. Davis // Proceedings of the 17th conference on Hypertext and hypermedia table of contents. – Odense, Denmark. – 2006. – P. 69–72.
- Resource Description Framework: Overview. [Электронный ресурс] // Режим доступа: http://www.w3.org/RDF/.
- The Dublin Core Metadata Initiative. [Электронный ресурс] // Режим доступа: http://dublincore.org/.
- FOAF project. [Электронный ресурс] // Режим доступа: http://www.foaf-project.org/.
- Simple Knowledge Organization System: Intoduction. [Электронный ресурс] // Режим доступа: http://www.w3.org/2004/02/skos/intro.
- Hearst M. Automatic acquisition of hyponyms from large text corpora / M. Hearst // Proceedings of the 14th conference on Computational linguistics. –1992. – V. 2. – P. 539–545.
- Giles L. Automatic document metadata extraction using Support Vector Machines / L. Giles, E. Manavoglu, H. Zha // Proceedings of the 2003 Joint Conference on Digital Libraries. – 2003. – P. 37–48.
- Wu Yu-Ch. Extracting named entities using Support Vector Machines / Yu-Ch. Wu, T.-K. Fan, Y.-Sh. Lee, Sh.-J. Yen // Lecture Notes in Computer Science. – 2006. – 3886. – P. 91–103.
- Xu K. Self-teaching semantic annotation method for knowledge discovery from text / K. Xu, S. Liao, R. Lau, L. Liao, H. Tang // HICSS ‘09. – 2009. – P. 1–7.
- Seymore K. Learning for information extraction learning Hidden Markov Model structure for information extraction / K. Seymore, A. McCallum, R. Rosenfeld // AAAI’99 Workshop on Machine Learning. – 1999. – P. 37–42.
- McCallum A. Maximum entropy Markov Models for information extraction and segmentation / A. McCallum, D. Freitag, F. Pereira // 17th International Conference on Machine Learning. – 2000. – P. 591 – 598.
- Grilheres B. A platform for semantic annotations and ontology population using conditional random fields / B. Grilheres, S. Canu, C. Beauce, S. Brunessaux // The 2005 IEEE/WIC/ACM International Conference. – 2005. – P. 790–793.
- Tang J. Tree-structured conditional random fields for semantic annotation / J. Tang, M. Hong, J. Li, B. Liang // Lecture Notes in Computer Science. – 2006. – 4273. – P. 640–653.
- Salton G. Term-weighting approaches in automatic text retrieval / G. Salton, C. Buckley // Information Processing & Management. – 1988. – 24(5). – P. 513–523.
- Chifu E. St. A neural model for unsupervised named entity classification / E. St. Chifu, V. R. Chifu. // The IEEE International Conference on Intelligent Agents, Web Technologies and Internet Commerce. – 2008. – P.1073–1078.
- Todorov K. Mining concept similarities for heterogeneous ontologies / K. Todorov, P. Geibel, K.-U. K hnberger // Lecture Notes in Computer Science. – 2010. – 6171. – P. 86-100.
- Habib M. Addressing scalability issues of named entity recognition using Multi-class Support Vector Machines/ M. Habib // World Academy of Science, Engineering and Technology. – 2008. – 37. – P. 69-78.
- Бодянский Е.В. Искусственные нейронные сети: архитектуры, обучение, применения / Бодянский Е.В., Руденко О.Г. – Харьков: ТЕЛЕТЕХ, 2004. – 372 с.
- Haykin S. Neural Networks. A Comprehensive Foundation / S. Haykin – Upper Saddle River, N. J.: Prentice Hall, Inc, 1999. – 842 p.
- Shynk J.J. Performance surfaces of a single-layer perceptron / J.J. Shynk. – IEEE Trans. on Neural Networks. – 1990. – 1. – P.268–274.
- Бодянский Е.В. Нейро-фаззи сети Петри в задачах моделирования сложных систем / Бодянский Е.В., Кучеренко Е.И., Михалев А.И. – Днепропетровск: Системные технологии, 2005. – 311 с.
- Dvoretzky A. On stochastic approximation / A. Dvoretzky // Proc. 3-rd Berkley Symp. Math. Statistics and Probability. – 1956. – 1. – P. 39–55.
- Goodwin G.C. A globally convergent adaptive predictor / G.C. Goodwin, P.J. Ramadge, P.E. Caines // Automatica. – 1981. – 1. – Р. 135–140.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Евгений Владимирович Бодянский, Ольга Васильевна Шубкина
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.