High-strength steel structure and mechanical properties after Q-n-P-integrated heat treatment

Authors

  • V. I. Zurnadzhy State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • V. G. Efremenko State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • О. V. Tsvetkova State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • A. V. Dzherenova State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.37.2018.160232

Keywords:

Q-n-P-integrated treatment, austenite, martensite, strength, ductility, impact toughness

Abstract

The article considers the effect of the newly designed Q-n-P-integrated («Quenching and Partitioning») heat treatment modes on the microstructure and mechanical properties changes of cost-saving alloyed high-strength steel 55Si3Mn2CrVMoNbА. It has been found that the application of Q-n-P-integrated technological schemes, with elongated soaking at 160°C, after previous bainitization, or thermal cycling, greatly increase the mechanical properties of 55Si3Mn2CrVMoNbА steel as compared to standard quenching and tempering (at 200-300°С). It has been found that the structure-free ferrite formation, contrary to presupposition, doesn’t increase the ductility of steel as compared to other investigated heat treatment modes. The most effective results showed the heat treatment according to TCT/Q-n-P mode (three cycles 160«250°С) which provided the formation in steel 55Si3Mn2CrVMoMbA high-strength state (TS = 1941-2116 MPa, 50-54 HRC) while maintaining high total elongation (10-16%) and impact toughness (KCU = 74 J/cm2), which results in a 5-fold increase in PSE («Product of Strength and Elongation») level (up to 31,5 GPа%) of treated steel as compared to quenching and tempering respectively. Heat treatment according to TCT/Q-n-P and В-Q-n-P modes in the investigated steel provides increased impact toughness level (up to 74-79 J/cm2) which makes it possible to use this steel with high cyclic and shock loads. Besides,according to the results shown in this article, the 55Si3Mn2CrVMoNbA steel properties in the state of Q-n-P-integrated treatment are in good agreement with the requirements for the 3rd generation high-strength steels. The study suggests that high mechanical properties are achieved due to the formation of the multiphase structure consisting of tempered martensite, lower bainite and significant amount of carbon enriched residual austenite. The obtained results demonstrate the promise of this technology for better mechanical properties of cost-saving alloyed machine-building and tool steels

Author Biographies

V. I. Zurnadzhy, State higher educational establishment "Priazovskyi state technical university", Mariupol

Ассистент

V. G. Efremenko, State higher educational establishment "Priazovskyi state technical university", Mariupol

Доктор технических наук, профессор

О. V. Tsvetkova, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат технических наук, доцент

A. V. Dzherenova, State higher educational establishment "Priazovskyi state technical university", Mariupol

Старший преподаватель

References

Список использованных источников (ГОСТ):

Carbon partitioning into austenite after martensite transformation / J.G. Speer [et al.] // Acta Materialia. – 2003. – № 51 (9). – Pp. 2611-2622. – Mode of access: DOI: 10.1016/S1359-6454(03)00059-4.

Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation / J.G. Speer [et al.] // Current opinion in solid state and materials science. – 2004. – № 8 (3). – Pp. 219-237. – Mode of access: DOI: 10.1016/j.cossms.2004.09.003.

Quenching and partitioning martensite – A novel steel heat treatment / D.V. Edmonds [et al.] // Materials Science and Engineering: A. – 2006. – № 438. – Pp. 25-34. – Mode of access: DOI: 10.1016/j.msea.2006.02.133.

Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon / C. Garcia-Mateo [et al.] // Materials Science and Engineering: A. – 2012. – № 549. – Pp. 185-192. – Mode of access: DOI: 10.1016/j.msea.2012.04.031.

A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility / M. Cai [et al.] // Metallurgical and Materials Transactions A. – 2014. – № 45 (12). – Pp. 5624-5634. – Mode of access: DOI: 10.1007/s11661-014-2504-x.

Microstructural evolution and tensile properties of 70 GPa•% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing / J. Li [et al.] // Materials Science and Engineering: A. – 2019. – № 745. – Pp. 212-220. – Mode of access: DOI: 10.1016/j.msea.2018.12.110.

Socrate S. Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels: thesis (Ph. D.) / S. Socrate. – Massachusetts institute of technology, Dept. of mechanical engineering, 1995. – 242 p.

Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels / N. Maheswari [et al.] // Materials Science & Engineering A. – 2014. – № 600. – Pp. 12-20. – Mode of access: DOI: 10.1016/j.msea.2014.01.066.

Ефременко В.Г. Технологические схемы термической обработки низколегированной стали на основе Q&P-принципа / В.Г. Ефременко, В.И. Зурнаджи, В.Г. Гаврилова // Научный вестник Донбасской государственной машиностроительной академии. – 2017. – № 1 (22E). – C. 15-23.

Schmitt J.H. New developments of advanced high-strength steels for automotive applications / J.H. Schmitt, T. Iung // Comptes Rendus Physique. – 2018. – № 19 (8). – Pp. 641-656. – Mode of access: DOI: 10.1016/j.crhy.2018.11.004.

Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel / V.I. Zurnadzhy [et al.] // Materials Science and Engineering: A. – 2019. – № 745 – Pp. 307-318. – Mode of access: DOI: 10.1016/j.msea.2018.12.106.

Бурова Д.В. Підвищення властивостей низьколегованих конструкційних сталей з різним вмістом вуглецю термічною обробкою з нагрівом в міжкритичний інтервал температур : дис. … канд. техн. наук : 05.16.01 / Бурова Дар’я Володимирівна. – Маріуполь, 2016. – 178 с.

References:

Speer J.G., Matlock D.K., De Cooman B.C., Schroth J.G. Carbon partitioning into austenite after martensite transformation. Acta Materialia, 2003, no. 51 (9), pp. 2611-2622. doi: 10.1016/S1359-6454(03)00059-4.

Speer J.G., Edmonds D.V., Rizzo F.C., Matlock D.K. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Solid State and Materials Science, 2004, no. 8, pp. 219-237. doi: 10.1016/j.cossms.2004.09.003.

Edmonds D.V., He K., Rizzo K., De Cooman B.C., Matlock D.K., Speer J.G. Quenching and partitioning martensite – A novel steel heat treatment. Materials Science and Engineering: A, 2006, no. 438, pp. 25-34. doi: 10.1016/j.msea.2006.02.133.

Garcia-Mateo C., Caballero F.G., Sourmail T., Kuntz M., Cornide J., Smanio V., Elvirad R. Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Materials Science and Engineering: A, 2012, no. 549, pp. 185-192. doi: 10.1016/j.msea.2012.04.031.

Cai M., Li Z., Chao Q., Hodgson P.D. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metallurgical and Materials Transactions A, 2014, no. 45 (12), pp. 5624-5634. doi: 10.1007/s11661-014-2504-x.

Li J., Song R., Li X., Zhou N., Song R. Microstructural evolution and tensile properties of 70 GPa•% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Materials Science and Engineering: A, 2019, no. 745, pp. 212-220. doi: 10.1016/j.msea.2018.12.110.

Socrate S. Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels. Thesis (Ph. D.). Massachusetts institute of technology, 1995. 242 p.

Maheswari N., Chowdhury S.G., Hari Kumar K.C., Sankaran S. Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels. Materials Science & Engineering: A, 2014, no. 600, pp. 12-20. doi: 10.1016/j.msea.2014.01.066.

Efremenko V.H., Zurnadzhy V.I., Gavrilova V.H. Tehnologicheskie shemy termicheskoj obrabotki nizkolegirovannoj stali na osnove Q&P principa [Technological schemes of low-alloy steel’s heat treatment based on Q&P principle]. Nauchnyi vestnik Donbasskoi gosudarstvennoi mashinostroitel’noi akademii – Scientific Herald of the Donbass State Engineering Academy, 2017, no. 1, pp. 15-23. (Rus.)

Schmitt J.H., Iung T. New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 2018, no. 19 (8), pp. 641-656. doi: 10.1016/j.crhy.2018.11.004.

Zurnadzhy V.I., Efremenko V.G., Wu K.M., Azarkhov A.Yu., Chabak Yu.G., Greshta V.L., Isayev O.B., Pomazkova M.V. Effects of stress relief tempering on microstructure and ten-sile/impact behavior of quenched and partitioned commercial spring steel. Materials Science and Engineering: A, 2019, no. 745, pp. 307-318. doi: 10.1016/j.msea.2018.12.106.

Burova D.V. Pidvyshhennja vlastyvostjej nyz’koljegovanyh konstrukcijnyh staljej z riznym vmistom vugljecju tjermichnoju obrobkoju z nagrivom v mizhkrytychnyj intjerval tjempjeratur. Diss. kand. techn. nauk [Improving the properties of low-alloy structural steels with different carbon content using heat treatment with heating in the intercritical temperature range. Cand. tech. sci. diss.]. Mariupol, 2016. 178 p. (Ukr.)

Published

2018-12-28

How to Cite

Zurnadzhy, V. I., Efremenko, V. G., Tsvetkova О. V., & Dzherenova, A. V. (2018). High-strength steel structure and mechanical properties after Q-n-P-integrated heat treatment. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (37), 35–43. https://doi.org/10.31498/2225-6733.37.2018.160232