Regularities of oxidized graphite swelling in a reactor in a gravity-falling layer

Authors

  • V. О. Maslov State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • Y. P. Pustovalov State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • L. О. Trofimova State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine https://orcid.org/0000-0003-4576-2589
  • L. О. Dan State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine https://orcid.org/0000-0001-9084-516X

DOI:

https://doi.org/10.31498/2225-6733.40.2020.216033

Keywords:

intercalated graphite compounds, thermografenite, expansion, bulk density, isothermal area

Abstract

The final stage of obtaining thermografenite is thermal shock heating of intercalated graphite, which is carried out in a dense moving fluidized layers, in the ascending flow, in the burner flame in the temperature range from 800°С to 1200°С. A fundamentally new approach is the treatment of intercalated graphite in a gravity-falling layer. It makes it possible to carry out the process in a split second. The proposed processing method is based on the principle of independent movement of similar particles. The present paper describes the basic regularities of intercalated graphite thermal expansion in the gravity-falling layer in the furnace temperature field. It has been shown that in the conditions of a gravity-falling layer the intercalated graphite particles almost instantly acquire the temperature of the environment. The research has found out the dependencies of the thermografenite bulk density on the isothermal zone temperature of the furnace have been found in this research. A new technique to study the swelling of oxidized graphite in the gravity-falling layer in the temperature field of the furnace has been proposed. The principle of independent movement of single particles of oxidized graphite has been formulated. It makes it possible to get high heat transfer coefficients (from 1920 to 5760 W/m2∙K) during heating. The main characteristics of the apparatus for producing thermally expanded graphite in the temperature range from 300°C to 1000°C have been proposed and analyzed. Investigation results of the dynamics of the transformation of the intercalated graphite into thermally expanded graphite under different isothermal temperature in a nitrogen atmosphere and the velocity of particles ranging from 0,9 to 0,35 m/s are presented. The obtained results are analyzed in the system of coordinates «bulk density of thermografenite – temperature of the furnace isothermal area». It has been found that the greatest rate of the intercalated graphite expansion is observed in the temperature range from 350 to 600°C anddeeper volumes additional expansion occurs at a higher temperature. Thermografenite with a bulk density from 3 to 5 kg/mhas been obtained in the temperature range from 800 to 1000°C

Author Biographies

V. О. Maslov, State higher educational establishment "Priazovskyi state technical university", Mariupol

Доктор технічних наук, професор

Y. P. Pustovalov, State higher educational establishment "Priazovskyi state technical university", Mariupol

Науковий співробітник

L. О. Trofimova, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат технічних наук, доцент

L. О. Dan, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат технічних наук, доцент

References

Перелік використаних джерел (ДСТУ):

Уббеладе А.Р. Графит и его кристаллические соединения / А.Р. Уббеладе, Ф.А. Льюис. – М. : Мир, 1965. – 256 с.

Физико-химические свойства графита и его соединений / И.Г. Черныш [и др.]. – К. : Наукова думка, 1990. – 200 с.

Eur, Pät. Appl. 87489, Cl, C04B 35/54. Expanded graphite particles / A. Hirschvogel, H. Zimmermann. – Publ. 07.09.83.

Махорин К.Е. Вспучивание природного графита, обработанного серной кислотой / К.Е. Махорин, А.П. Кожан, В.В. Веселов // Химическая технология. – 1985. – № 2. – С. 3-6.

Вспучивание графита в плотном и взвешенном слоях / К.Е. Махорин, А.П. Кожан, В.В. Веселов, В.Н. Александров // Химическая технология. – 1987. – № 2. – С. 43-49.

А. с. 1579008 СССР, МКИ С 01 В 31/04. Способ получения расширенного графита / В.А. Маслов, В.И. Паук, Ю.П. Пустовалов и др. – № 4392502; приоритет изобретения 15.03.1988 (ДСП).

References:

Ubbelade A.R., L’iuis F.A. Grafit i ego kristallicheskie soedineniya [Graphite and its crystal-line compounds]. Moscow, Mir Publ., 1965. 256 p. (Rus.)

Chernysh I.G., Karpov I.I., Prikhod’ko G.P., Shai V.M. Fiziko-himicheskie svojstva grafita i ego soedinenij [Physical and chemical properties of graphite and its compounds]. Kiev, Naukova dumka Publ., 1990. 200 p. (Rus.)

Hirschvogel A., Zimmermann H. Expanded graphite particles. Patent Eur, no. 87489, 1983.

Mahorin K.E., Kozhan A.P., Veselov V.V. Vspuchivanie prirodnogo grafita, obrabotannogo sernoj kislotoj [Extrusion of natural graphite treated with sulfuric acid]. Himicheskaja tehnologija – Chemical Technology, 1985, no. 2, pp. 3-6. (Rus.)

Mahorin K.E., Kozhan A.P., Veselov V.V., Aleksandrov V.N. Vspuchivanie grafita v plotnom i vzveshennom slojah [Graphite swelling in dense and suspended layers]. Himicheskaja tehnologija – Chemical Technology, 1987, no. 2, pp. 43-49. (Rus.)

Maslov V.A., V.I. Pauk, Pustovalov Yu.P. Sposob polucheniya rasshirennogo grafita [The method of obtaining thermally expanded graphite]. Patent USSR, no. 1579008, 1988. (Rus.)

How to Cite

Maslov V. О., Pustovalov, Y. P., Trofimova L. О., & Dan L. О. (2020). Regularities of oxidized graphite swelling in a reactor in a gravity-falling layer. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (40), 14–19. https://doi.org/10.31498/2225-6733.40.2020.216033