Формування рекомендацій фільмів на основі гібридного підходу

Автор(и)

  • О.Є. П’ятикоп ДВНЗ «Приазовський державний технічний університет», м. Маріуполь, Україна https://orcid.org/0000-0002-7731-3051
  • К.Г. Мініна ДВНЗ «Приазовський державний технічний університет», м. Маріуполь, Україна
  • Р.О. Безуглов ДВНЗ «Приазовський державний технічний університет», м. Маріуполь, Україна

DOI:

https://doi.org/10.31498/2225-6733.41.2020.226119

Ключові слова:

рекомендаційна система, колаборативна фільтрація, контентна фільтрація, схожість елементів

Анотація

Стаття присвячена темі створення системи рекомендацій, яка зможе проаналізувати дані, отримані від користувача про вподобання фільмів та використати їх для прогнозування нових рекомендацій. В рамках роботи було проведено аналіз наукових видань, існуючих методів та алгоритмів, які використовуються для побудови системи рекомендацій та їх гібридизацію. Визначено, що гібридизація може бути досягнута різними підходами завдяки поєднанню декількох алгоритмів. Об’єднання методів для вирішення проблеми в більшості випадків дає більш ефективні і точні результати. Для реалізації гібридного підходу обрано два метода: фільтрацію на основі вмісту та спільну (колаборативну) фільтрацію, кожен з яких відповідає певному сценарію рекомендацій. У експериментальних дослідженнях було випробувано здатність системи запропонувати фільми, спираючись на дані про подібність користувачів. Подібність користувачів розраховувалась на основі вимірювання ступеня лінійної залежності – коефіцієнт кореляції Пірсона

Біографії авторів

О.Є. П’ятикоп , ДВНЗ «Приазовський державний технічний університет», м. Маріуполь

Кандидат технічних наук, доцент

К.Г. Мініна , ДВНЗ «Приазовський державний технічний університет», м. Маріуполь

Магістр

Р.О. Безуглов , ДВНЗ «Приазовський державний технічний університет», м. Маріуполь

Магістр

Посилання

Перелік використаних джерел (ДСТУ):

Либрусек – много книг [Електронний ресурс] : [Веб-сайт]. – Електронні дані. – Режим доступу: www.librusec.pro. – Назва з екрану.

Isinkaye F.O. Recommendation systems: Principles, methods and evaluation / F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh // Egyptian informatics journal. – 2015. – Vol. 16 (3). – Pp. 261-273. – Mode of access: https://doi.org/10.1016/j.eij.2015.06.005.

Чередніченко О.Ю. Моделі формування рекомендацій у інтелектуальних системах електронної комерції / О.Ю. Чередніченко, О.В. Янголенко, О.В. Іващенко, О.М. Матвєєв // Системи обробки інформації. – 2020. – № 1 (160). – С. 32-39. – Mode of access: https://doi.org/10.30748/soi.2020.160.04.

Мазурік О.Ю. Покращення результатів роботи рекомендаційних систем за допомогою алгоритму SVD / О.Ю. Мазурік // International scientific journal. – 2015. – № 9. – С. 61-64. – Режим доступу: http://nbuv.gov.ua/UJRN/mnj_2015_9_16.

Aggarwal C.C. Recommender Systems: The Textbook / C.C. Aggarwal. – New York : Springer International Publishing, 2017. – 498 p.

Мелешко Є.В. Дослідження методів побудови рекомендаційних систем в мережі інтер-нет / Є.В. Мелешко, С.Г. Семенов, В.Д. Хох // Системи управління, навігації та зв’язку. – Полтава: ПНТУ, 2018. – Т. 1 (47). – С. 131-136. – Mode of access: https://doi.org/10.26906/SUNZ.2018.1.131.

Thorat P.B. Survey on collaborative filtering, content-based filtering and hybrid recommen-dation system / P.B. Thorat, , R.M. Goudar, S. Barve // International Journal of Computer Applications. – 2015. – № 110 (4). – Pp. 31-36. – Mode of access: https://doi.org/10.5120/19308-0760.

Content-based collaborative filtering for news topic recommendation / Z. Lu, Z. Dou, J. Lian, X. Xie, Q. Yang // Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI’15). – AAAI Press, 2015. – Pp. 217-223.

Лобур М.В. Моделі і методи прогнозування рекомендацій для колаборативних рекомендаційних систем / М.В. Лобур, М.Є. Шварц, Ю.В. Стех // Вісник Національного університету «Львівська політехніка» «Інформаційні системи та мережі». – Львів, 2018. – № 901. – С. 68-75.

Ly A. Analytic posteriors for Pearson’s correlation coefficient / A. Ly, M. Marsman, E.J. Wagenmakers // Statistica Neerlandica. – 2018. – Vol. 72 (1). – Pp. 4-13. – Mode of access: https://doi.org/10.1111/stan.12111.

References:

Librusek – mnogo knig (Librusek – many books) Available at: www.librusec.pro (accessed 20 June 2020). (Rus.)

Isinkaye F.O., Folajimi Y.O., Ojokoh B.A. Recommendation systems: Principles, methods and evaluation. Egyptian informatics journal, 2015, vol. 16 (3), pp. 261-273. doi: 10.1016/j.eij.2015.06.005.

Cherednichenko O.Yu., Yanholenko O.V., Ivashchenko O.V., Matvyeyev O.M. Modeli formuvannya rekomendatsiy u intelektual’nykh systemakh elektronnoyi komertsiyi [Models of formation of recommendations in intellectual systems of electronic commerce]. Systemy obrobky informatsiyi – Information processing systems, 2020, no. 1 (160), pp. 32-39. doi: 10.30748/soi.2020.160.04. (Ukr.)

Mazurik O.Yu. Pokrashchennya rezul’tativ roboty rekomendatsiynykh system za dopomo-hoyu alhorytmu SVD [Improving the results of recommendation systems using the SVD al-gorithm]. International scientific journal, 2015, no. 9, pp. 61-64. Available at: http://nbuv.gov.ua/UJRN/mnj_2015_9_16. (Ukr.)

Aggarwal C.C. Recommender Systems: The Textbook. New York, Springer International Publ., 2017. 498 p.

Meleshko Ye.V., Semenov S.H., Khokh V.D. Doslidzhennya metodiv pobudovy rek-omendatsiynykh system v merezhi internet [Research of methods for building recommenda-tion systems on the Internet]. Systemy upravlinnya, navihatsiyi ta zv’yazku – Control, navi-gation and communication systems, 2018, vol. 1 (47), pp. 131-136. doi: 10.26906/sunz.2018.1.131. (Ukr.)

Thorat P.B., Goudar R.M., Barve S. Survey on collaborative filtering, content-based filtering and hybrid recommendation system. International Journal of Computer Applications, 2015, no. 110 (4), pp. 31-36. doi: 10.5120/19308-0760.

Lu Z., Dou Z., Lian J., Xie X., Yang Q. Content-based collaborative filtering for news topic recommendation. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-gence (AAAI’15), 2015, pp. 217-223.

Lobur M.V., Shvarts M.Ye., Stekh Yu.V. (2018) Modeli i metody prohnozuvannya rek-omendatsiy dlya kolaboratyvnykh rekomendatsiynykh system [Models and methods of forecasting recommendations for collaborative recommendation systems]. Visnyk Natsion-al’noho universytetu «L’vivs’ka politekhnika» «Informatsiyni systemy ta merezhi» – Journal of Lviv Polytechnic National University «Information Systems and Networks», 2018, no. 901, pp. 68-75. (Ukr).

Ly A., Marsman M., Wagenmakers E.J. Analytic posteriors for Pearson’s correlation coeffi-cient. Statistica Neerlandica, 2018, vol. 72 (1), pp. 4-13. doi: 10.1111/stan.12111.

##submission.downloads##

Опубліковано

2020-12-24

Як цитувати

П’ятикоп , О., Мініна , К., & Безуглов , Р. . (2020). Формування рекомендацій фільмів на основі гібридного підходу. Вісник Приазовського Державного Технічного Університету. Серія: Технічні науки, (41), 13–19. https://doi.org/10.31498/2225-6733.41.2020.226119

Номер

Розділ

122 Комп'ютерні науки та інформаційні технології