Development of a dynamic model of transients in mechanical systems using argument-functions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.101282

Keywords:

dynamic problem, wave equation, flat functions, adjacent stands, argument-functions, conditions for the existence of solutions

Abstract

There are a number of applied problems in which it is necessary to take into account the dynamic component of the process or phenomenon including the fact that the load is applied not instantaneously but in time. For example, in continuous rolling, such combinations of mechanical systems appear in which action transfer from one rolling stand to another via the strip proceeds with some delay affecting transient processes and the strip gripping capability in the adjacent stands of the continuous mill. The strip between the mill stands is in an elastic state. When the rolls start acting on it during the bite in the next stand, they transfer disturbance to the strip in a form of oscillations or in a form of a stationary action.

The aim of this research was to expand the application field of the obtained solutions to satisfy boundary and initial conditions formulated by applied production problems. The wave problem was considered as the process of propagation of the initial deviation and initial velocity.

On the basis of the method, the essence of which is the use of argument-functions, solution of dynamic linear and spatial problems of the elasticity theory was shown. In the course of the study, conditions for existence of new solutions for the wave problem, which are limited by the boundary conditions of various processes were shown. The initial differential equations and boundary conditions determine the type of differential equations for the argument-functions that close the solution. Argument-functions can be restricted by the Cauchy-Riemann relations and the corresponding differential invariants on the one hand and the differential relationships which result in that the argument-functions are the same for adjacent coordinate-time dependencies on the other hand. Besides, analytical dependences on the parameters entering into the d’Alembert formula were obtained.

Author Biographies

Valery Chigirinsky, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

Doctor of Technical Sciences, Professor

Department of Metal Forming

Alexander Putnoki, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD

Department of Metal Forming

References

  1. Putnoki, A. Yu. (2015). Mathematical model of rolling dynamics when filling finishing train of wide-strip mill with strip. Metallurgical and Mining Industry, 11, 218–222.
  2. Bronshteyn, I. M., Semendyayev, K. L. (1964). Spravochnik po matematike Мoscow: Nauka, 608.
  3. Sneddon, I. N., Berri, D. S.; Grigolyuk, E. I. (Ed.) (1961). Klassicheskaya teoriya uprugosti. Moscow, 219.
  4. Mehtiev, M. F. (2008). Asimptoticheskiy analiz nekotoryih prostranstvennyih zadach teorii uprugosti dlya polyih tel. Baku, 320.
  5. Krupoderov, A. V., Scherbakov, S. S. (2013). Reshenie nekotoryih dinamicheskih zadach teorii uprugosti metodom granichnyih elementov. Teoreticheskaya i prikladnaya mehanika, 28, 294–300.
  6. Ermolenko, G. Yu. (2003). Reshenie dinamicheskoy zadachi anizotropnoy teorii uprugosti so smeshannyimi kraevyimi usloviyami. Vestn. Sam. gos. tehn. un-ta. Ser. Fiz.-mat. nauki, 86–88.
  7. Sinekop, N. S., Lobanova, L. S., Parhomenko, L. A. (2015). Metod R-funktsiy v dinamicheskih zadachah teorii uprugosti. Kharkiv, 95.
  8. Zakaryan, T. V. (2013). O sobstvennyih kolebaniyah ortotropnyih plastin v pervoy kraevoy zadachi teorii uprugosti pri nalichie vyazkogo soprotivleniya. Izv. NAN Armenii. Mehanika, 66 (3), 38–48.
  9. Bagdaev, A. G., Vardanyan, A. V., Vardanyan, S. V. (2007). Reshenie nestatsionarnoy smeshannoy granichnoy zadachi teorii uprugosti dlya poluprostranstva. Izv. NAN Armenii. Mehanika, 60 (4), 23–37.
  10. Kupradze, V. D., Burchuladze, T. V. (1975). Dinamicheskie zadachi teorii uprugosti i termouprugosti. Itogi nauki i tehn. Seriya "Sovremennyie problemyi matematiki", 7, 163–294.
  11. Tikhonov, A. N., Samarskiy, A. A. (1966). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 724.
  12. Panovko, Ya. G. (1976). Osnovy prikladnoy teorii uprugikh kolebaniy i udara. Leningrad: Mashinostroenie, 320.
  13. Babanov, I. M. (1968). Teoriya kolebaniy. Moscow: Nauka, 560.
  14. Noritsin, I. A. (1977). Proyektirovaniye kuznechnykh i kholodnoshtampovochnykh tsekhov i zavodov. Moscow: Vychaya shkola, 422.
  15. Chigirinskiy, V. V. (2009). Metod resheniya zadach teorii plastichnosti s ispolzovaniyem garmonicheskikh funktsiy. Izv. vuzov. Chernaya metallurgiya, 5, 11–16.
  16. Chigirinskiy, V. V., Kresanov, Yu. S., Kachan, A. Ya., Boguslaev, A. V., Legotkin, G. I., Slepyinin, A. Ya. et. al. (2014). Proizvodstvo tonkostennogo prokata spetsialnogo naznacheniya. Zaporozhe, 285.
  17. Chigirinsky, V. V., Lenok, A. A., Echin, S. M. (2015). Determination of integral characteristics of stress state of the point during plastic deformation in conditions of volume loading. Metallurgical and Mining Industry, 11, 153–163.
  18. Chigirinskiy, V. V., Sheyko, S. P., Plakhotnik, V. V. (2013). Novyye podkhody v reshenii dinamicheskikh zadach obrabotki metallov davleniyem. Vіsnik SevNTU, 137, 99–102.
  19. Chigirinskiy, V. V., Putnoki, A. Yu. (2015). Vliyaniye dinamicheskogo nagruzheniya v smezhnykh kletyakh prokatnogo stana. Fundamentalnyye i prikladnyye problem tekhniki i tekhnologii, 4 (312), 21–26.
  20. Targ, S. M. (1998). Kratkiy kurs teoreticheskoy mehaniki. Moscow: Vyschaya shkola, 411.

Downloads

Published

2017-06-19

How to Cite

Chigirinsky, V., & Putnoki, A. (2017). Development of a dynamic model of transients in mechanical systems using argument-functions. Eastern-European Journal of Enterprise Technologies, 3(7 (87), 11–22. https://doi.org/10.15587/1729-4061.2017.101282

Issue

Section

Applied mechanics