Examining the effect of physical fields on the adhesive strength of protective epoxy composite coatings

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103128

Keywords:

epoxy composition, ultrasonic treatment, electromagnetic field, highly dispersed filler, residual stresses

Abstract

We examined and substantiated the effect of treating the compositions in the electromagnetic field and with ultrasound on the adhesive strength of epoxy composites that contain highly dispersed particles of ferro-, para- and diamagnetic nature. It was established experimentally that the optimal content of highly dispersed fillers is 6 mass fractions.

The studies conducted confirm the prospects of using the treatment of compositions in physical fields for obtaining epoxy composite protective coatings. The given technology enables to ensure high adhesive strength (60–70 MPa) of bonds between a coating and a metal base, to increase the degree of structuring (G=99.7 %) and to reduce by 65 % internal stresses in coatings. We achieved an increase in the number of physical-chemical bonds between an epoxy polymer binder and the surface of highly dispersed particles by increasing the mobility of segments of macromolecules and improving the interaction between components of the system under the influence of external physical fields.

By using the electron microscopy method, we registered a uniform distribution of ferro- and paramagnetic particles in epoxy composites after treating the compositions in the electromagnetic field. This occurs due to the orientation of the dipole segments of macromolecules in a force field and the uniform distribution of chemical bonds in the structure of epoxy composite.

The received epoxy composite coatings with highly dispersed powders after treating the compositions in the physical field are characterized by defect-free structure. Epoxy composite coatings could be used as wear- and corrosion resistant coatings for parts of machines and mechanisms in automotive and instrument-making industries, as well as in the oil and gas sector. Such parts can operate under conditions of temperature gradient, mechanical stresses, deformations and aggressive impacts.

Author Biographies

Vitalii Kashytskyi, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Associate Professor

Department of material science

Petro Savchuk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

Doctor of Technical Sciences, Professor

Department of material science

Viktoria Malets, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

PhD, Assistant

Department of material science

Yuliia Herasymiuk, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

Postgraduate Student

Department of material science

Serhii Shchehlov, Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

Postgraduate student

Department of material science

References

  1. Buketov, A. V., Krasnen’kyi, V. M. (2013). Influence of the range of particle sizes of the filler on the adhesion strength and residual stresses in epoxy composites. Materials Science, 48 (4), 521–530. doi: 10.1007/s11003-013-9533-2
  2. Buketov, A. V., Karpenko, Yu. A., Sapronov, O. O., Skirdenko, V. O. (2012). Effect of pulsed magnetic field on properties of epoxy nanocomposites. Metallurgy, 51 (3), 385–390.
  3. Sapronov, O., Nigalati, V., Smyrnov, I., Dolgov, M. (2013). Vplyv vmistu i pryrody dribnodyspersnogo napovnyuvacha na mehanichni vlastyvosti i strukturu polimernyh zahysnyh pokryttiv. Visnyk HDMA, 2 (9), 228–237.
  4. Sapronov, O. O. (2013). Doslidzhennya pryrody khimichnykh i fizychnykh zv’yazkiv epoksydnykh nanokompozytiv metodom ICh-, EPR-spektral'noho analizu ta optychnoyi mikroskopiyi. Naukovi notatky, 43, 62–73.
  5. Levyts'kyy, V. (2006). Doslidzhennya kinetyky tverdinnya epoksykompozytiv pislya ul'trafioletovoho oprominennya. Visnyk TDTU, 11 (2), 132–134.
  6. Bilyy, L., Isayev, E., Leonov, V. et. al. (2011). Doslidzhennya vplyvu enerhetychnykh poliv na vlastyvosti epoksydnykh kompozytiv. Visnyk Ternopil's'koho natsional'noho tekhnichnoho universytetu, 187–192.
  7. Miura, K., Tsuda, D., Itamura, N., Sasaki, N. (2007). Superlubricity of Fullerene Intercalated Graphite Composite. Japanese Journal of Applied Physics, 46 (8A), 5269–5274. doi: 10.1143/jjap.46.5269
  8. Potschke, P., Kretzschmar, B., Janke, A. (2007). Use of carbon nanotube filled polycarbonate in blends with montmorillonite filled polypropylene. Composites Science and Technology, 67 (5), 855–860. doi: 10.1016/j.compscitech.2006.02.034
  9. Garkusha, O. M., Mahno, S. N., Prihod'ko, G. P., Cemencov, Yu. I. (2008). Kineticheskie svoystva kompozitov politetraftorehtilen. Himiya, fizika i tekhnologiya poverhnosti, 14, 140–146.
  10. Usenko, A. A., Korskanov, V. V., Davydenko, V. V. et. al. (2011). Teplofizychni vlastyvosti i termodynamika nanokompozytiv na osnovi epoksydnoho polimeru ta karbonanotrubok. Polimernyy zhurnal, 4, 328–333.
  11. Nizina, T. A., Kislyakov, P. A., Kuznecov, N. M. (2009). Eksperimental'nye issledovaniya uprugo-prochnostnyh harakteristik ehpoksidnyh kompozitov, modificirovannyh nanochasticami. Stroitel'stvo, arhitektura, dizayn, 1 (5), 23–32.
  12. Xu, Y., Ray, G., Abdel-Magid, B. (2006). Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Composites Part A: Applied Science and Manufacturing, 37 (1), 114–121. doi: 10.1016/j.compositesa.2005.04.009
  13. Muradyan, V. E., Sokolov, E. A., Babenko, S. D., Moravskiy, A. P. (2010). Diehlektricheskie svoystva kompozitov, modificirovannyh uglerodnymi nanostrukturami, v mikrovolnovom diapazone. Zhurn. tekhn. Fiziki, 80 (2), 83–87.
  14. Prabhu, T. N. (2012). Thermal Degradation of HDPE Short Fibers Reinforced Epoxy Composites. IOSR Journal of Applied Chemistry, 2 (1), 39–44. doi: 10.9790/5736-0213944

Downloads

Published

2017-06-19

How to Cite

Kashytskyi, V., Savchuk, P., Malets, V., Herasymiuk, Y., & Shchehlov, S. (2017). Examining the effect of physical fields on the adhesive strength of protective epoxy composite coatings. Eastern-European Journal of Enterprise Technologies, 3(12 (87), 16–22. https://doi.org/10.15587/1729-4061.2017.103128

Issue

Section

Materials Science