Design of fire detectors capable of self-adjusting by ignition
DOI:
https://doi.org/10.15587/1729-4061.2017.108448Keywords:
self-adjusting fire detector, guaranteed ignition detection, combustible material, threshold value, verificationAbstract
The concept of guaranteed ignition detection at a site was introduced. A criterion of optimization of guaranteed detection was formulated, which comes down to the equality of probabilities of false detection and missing of ignition source. Algorithms and structure of fire detectors, capable of self-adjusting by ignition of materials, were developed. Their distinctive feature is the possibility of being applied under uncertain conditions for arbitrary and combustible materials that are unknown in advance. To enhance effectiveness of fire detectors capable of self-adjusting by combustion of materials, we proposed adaptation of original threshold value to current observations of ignition components. For this purpose, it was proposed to use the procedure of median filtration of recorded data.
As a parameter of convergence of the procedure of threshold self-adjustment, we consider a fixed and dynamic way of its determining. This makes it possible to provide adjustment of original convergence of procedures toward observed components of combustion of various materials. Verification of the proposed self-adjusting fire detectors indicates their capability to provide guaranteed detection of sources of ignition for various materials at the early stages under conditions unknown in advanceReferences
- Poulsen, A., Jomaas, G. (2011). Experimental Study on the Burning Behavior of Pool Fires in Rooms with Different Wall Linings. Fire Technology, 48 (2), 419–439. doi: 10.1007/s10694-011-0230-0
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: 10.15587/1729-4061.2017.101985
- Oppelt, U. (2006). Improvement on fire detectors by using multiple sensors. Fire & Safety. Available at: http://www.securitysa.com/regular.aspx?pklregularid=2502
- Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: 10.3390/a7040523
- Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: 10.1016/s1007-0214(11)70005-0
- Cestari, L. A., Worrell, C., Milke, J. A. (2005). Advanced fire detection algorithms using data from the home smoke detector project. Fire Safety Journal, 40 (1), 1–28. doi: 10.1016/j.firesaf.2004.07.004
- Radonja, P., Stankovic, S. (2009). Generalized profile function model based on neural networks. Serbian Journal of Electrical Engineering, 6 (2), 285–298. doi: 10.2298/sjee0902285r
- Tsai, Y. C. (2007). The Design and Implementation of Early Fire Detection and Hierarchical Evacuation Alarm System, Master Thesis. Graduate Institute of Networking and Communication Engineering. Taiwan.
- Ristic, J., Radosavljevic, D. (2011). Decision algorithms in fire detection systems. Serbian Journal of Electrical Engineering, 8 (2), 155–161. doi: 10.2298/sjee1102155r
- Andronov, V., Pospelov, B., Rybka, E. (2016). Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 38–44. doi: 10.15587/1729-4061.2016.75063
- Acclimate intelligent multi-criteria sensor MIX-2251TMB. Mircom. Available at: http://www.mircom.com/media/datasheets/CAT-5919_MIX-2251TMB_ACCLIMATE_Intelligent_Multi-Criteria_Sensor.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Boris Pospelov, Vladimir Andronov, Evgenіy Rybka, Stanislav Skliarov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.